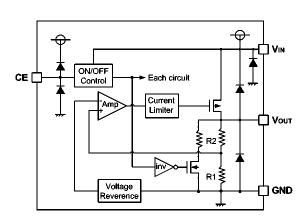


■ INTRODUCTION

The HM1138 series are a group of positive voltage regulators manufactured by CMOS technologies with high ripple rejection, ultra low noise, low power consumption and low dropout voltage, which can prolong battery life in portable electronics. The HM1138 series work with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications. The HM1138 series consume less than 0.1µA in shutdown mode and have fast turn-on time less than 50µS. The series are very suitable for the battery-powered equipments, such as RF applications and other systems requiring a quiet voltage source.

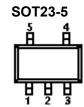

■ FEATURES

- Low Output Noise: 40μV_{RMS}
 (10Hz~100kHz)
- Low Dropout Voltage: 150mV@150mA
- Low Quiescent Current: 50μA
- High Ripple Rejection: 75dB@1kHz
- Excellent Line and Load Transient Response
- Operating Voltage Range: 2.0V∼6.0V
- Output Voltage Range: 1.0V ~ 5.0V
- High Accuracy: ±2 % (Typ.)
- Built-in Current Limiter, Short-Circuit Protection
- TTL- Logic-Controlled Shutdown Input

■ APPLICATIONS

- Cellular and Smart Phones
- Laptop, Palmtops and PDA
- Digital Still and Video Cameras
- MP3, MP4 Player
- Radio control systems
- Battery-Powered Equipment

■ BLOCK DIAGRAM


■ ORDER INFORMATION

HM1138B_①_②

DESIGNATOR	SYMBOL	DESCRIPTION			
1	Integer	Output Voltage e.g.1.8V=18			
	Package:SOT23-5 : MR				
2	Package:DF	N1×1-4 : DR			

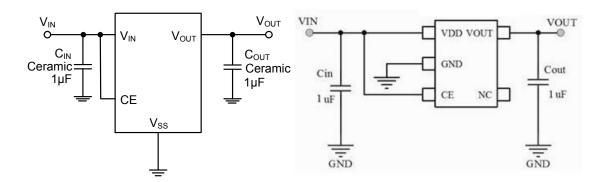
■ PIN CONFIGURATION

DFN1×1-4

SOT-23-5

PIN NUMBER	SYMBOL	FUNCTION
1	Vin	Power Input Pin
2	Vss	Ground
3	CE	Chip Enable Pin
4	NC	No Connection
5	Vouт	Output Pin

DFN1×1-4


PIN NUMBER	SYMBOL	FUNCTION
1	V _{OUT}	Output Pin
2	V _{SS}	Ground
3	CE	Chip Enable Pin
4	V _{IN}	Power Input Pin

■ Marking information

MARKING						
	Package					
VOLTAGE(V)	DFN1X1	SOT23-5				
1.2	√	√				
1.5	√	√				
1.8	√	√				
2.5	√	√				
2.8	√	√				
3.0	√	√				
3.3	√	√				

■ TYPICAL APPLICATION

ABSOLUTE MAXIMUM RATINGS(1)

(Unless otherwise specified, T_A=25℃)

(Offices outletwise specifica, TA-200)						
PARAMETER		SYMBOL	RATINGS	UNITS		
Input Voltage ⁽²⁾		Vin	-0.3~ 7			
Output Voltage(2)		Vouт	-0.3~V _{IN} +0.3 V			
Output Current		Іоит	500	mA		
Dower Dissinction	SOT23-5	D	0.4	W		
Power Dissipation	DFN1X1-4	P_D	0.4	W		
Operating free air ten	nperature range	T _A	-40~85	C		
Operating Junction To	emperature Range ⁽³⁾	Tj	-40~125	C		
Storage Temperature		T _{stg}	-40~125	С		
Lead Temperature(So	oldering, 10 sec)	T _{solder}	260	C		
Daalaaa Thamaal Daaia	.	SOT23-5	285	C/W		
Package Thermal Resistance (θ _{JA})		DFN1X1-4	280	C / W		
CCD ratio a(4)		Human Body Model -(HBM)	4	kV		
ESD rating ⁽⁴⁾		Machine Model- (MM)	200	V		

- (1) Stresses beyond those listed under *absolute maximum ratings may* cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.
- (2) All voltages are with respect to network ground terminal.
- (3) This IC includes over temperature protection that is intended to protect the device during momentary overload. Junction temperature will exceed 125°C when over temperature protection is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.
- (4) ESD testing is performed according to the respective JESD22 JEDEC standard.

The human body model is a 100 pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	MIN.	NOM.	MAX.	UNITS
Supply voltage at V _{IN}	2		6	V
Operating junction temperature range, T _j	0		125	C
Operating free air temperature range, T _A	0		85	C

■ ELECTRICAL CHARACTERISTICS

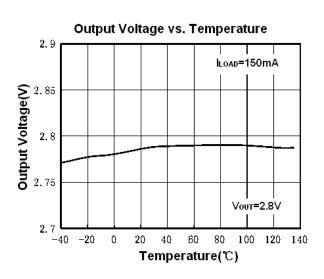
HM1138 Series ($V_{IN}=V_{OUT}+1V$, $C_{IN}=C_{OUT}=1\mu F$, $T_A=25\Box$,unless otherwise specified)

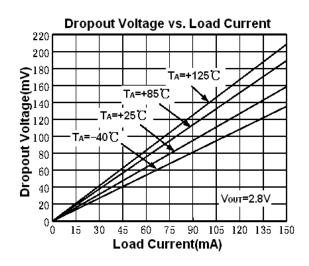
PARAMET	ER	SYMBOL	CONDITIONS	MIN.	TYP. ⁽⁶⁾	MAX.	UNITS
Output Voltage		V _{ОUТ} (Е) ⁽⁷⁾	I _{OUT} =1mA	V _{ОUТ} ⁽⁸⁾ *0.98	V _{OUT} ⁽⁸⁾	V _{OUT} ⁽⁸⁾ *1.02	V
Supply Cur	rent	I _{SS}			μΑ		
Standby Cu	rrent	I _{STBY}	CE = V _{SS}			0.1	μΑ
Output Cur	rent	Іоит	_	300			mA
Dropout Vol	tage	V _{DO} ⁽⁹⁾	I _{ОUТ} =150mA V _{ОUТ} ≥2.8V		150		mV
Load Regulation		Δνουτ	V _{IN} = V _{OUT} +1V, 1mA≤I _{OUT} ≤100mA		10		mV
Line Regulation		$\frac{\Delta V_{OUT}}{V_{OUT} \times \Delta V_{IN}}$	I _{OUT} =10mA V _{OUT} +1V≤V _{IN} ≤6V		0.01	0.2	%/V
Output Voltage Temperature Characteristics		$\frac{\Delta V_{OUT}}{\Delta T \times V_{OUT}}$	I _{OUT} =10mA -40≤T≤+85		100		ppm
Short Curr	ent	Ishort	V _{OUT} =V _{SS}		100		mA
Input Volta	ige	VIN	_	2.0		6.0	V
Dower Cumply	217Hz				-80		
Power Supply	1kHz	PSRR	I _{оит} =50mA		-75		dB
Rejection Rate	10kHz				-70		
CE "High" Voltage		Vce"H"		1.5		Vin	V
CE "Low" Vo	Itage	V _{CE} "L"				0.3	V
C _{OUT} Auto-Disc Resistanc	_	Rdischrg	V _{IN} =5V, V _{OUT} =3.0V, V _{CE} =V _{SS}		80		Ω

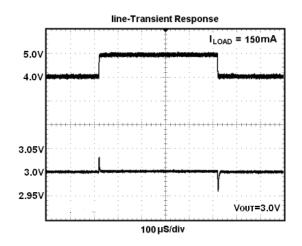
⁽⁶⁾ Typical numbers are at 25°C and represent the most likely norm.

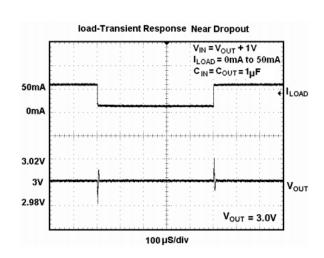
⁽⁷⁾ $V_{OUT}(E)$: Effective Output Voltage (le. The output voltage when V_{IN} = (V_{OUT} +1.0V) and maintain a certain I_{OUT} Value).

⁽⁸⁾ Vout: Specified Output Voltage.

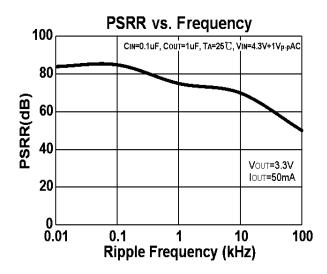

⁽⁹⁾ V_{DO} : The Difference Of Output Voltage And Input Voltage When Input Voltage Is Decreased Gradually Till Output Voltage Equals To 98% Of V_{OUT} (E).

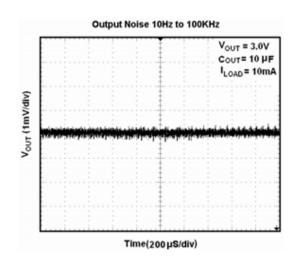


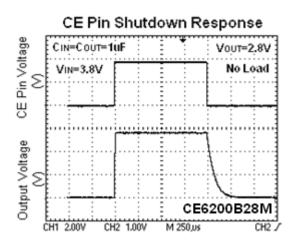

■ DROPOUT VOLTAGE CHART

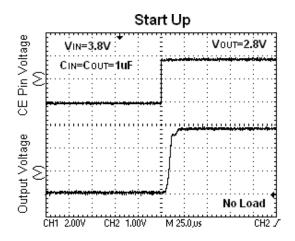

Setting Output Voltage	Dropout Voltage(mV)@ I _{OUT} =150mA		
V _{OUT} (V)	Тур.	Max.	
1.2	380	600	
1.5	270	600	
1.8	230	600	
2.5	180	400	
2.8	160	220	
3.0	155	220	

■ TYPICAL PERFORMANCE CHARACTERISTICS



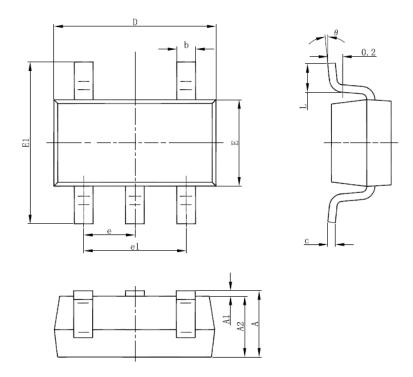






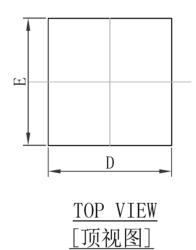
COUT Auto-Discharge Function

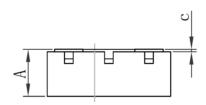
HM1138 with enable series can discharge the electric charge in the output capacitor (C_{OUT}), when a low signal to the CE pin, which enables a whole IC circuit turn off, is inputted via the N-channel transistor located between the V_{OUT} pin and the V_{SS} pin (cf. BLOCK DIAGRAM). The C_{OUT} auto-discharge resistance value is set at 80Ω (V_{OUT} =3.0V @ V_{IN} =5.0V at typical). The discharge time of the output capacitor (C_{OUT}) is set by the C_{OUT} auto-discharge resistance (R) and the output capacitor (C_{OUT}). By setting time constant of a C_{OUT} auto-discharge resistance value [$R_{DISCHRG}$] and an output capacitor value (C_{OUT}) as τ (τ =C x $R_{DISCHRG}$), the output voltage after discharge via the N-channel transistor is calculated by the following formulas.


$$V = V_{OUT(E)} \times e^{-t/\tau}$$
, or $t=\tau ln \left(V / V_{OUT(E)} \right)$

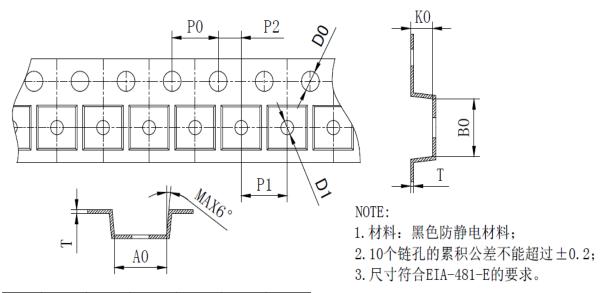
(V : Output voltage after discharge, V_{OUT(E)} : Output voltage, t: Discharge time,

τ: Cout auto-discharge resistance Rdischarge voluput capacitor (Cout) value C)


• SOT-23-5 PACKAGE OUTLINE DIMENSIONS


Cumb a l	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)	0.037(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

• DFN1×1-4 PACKAGE OUTLINE DIMENSIONS



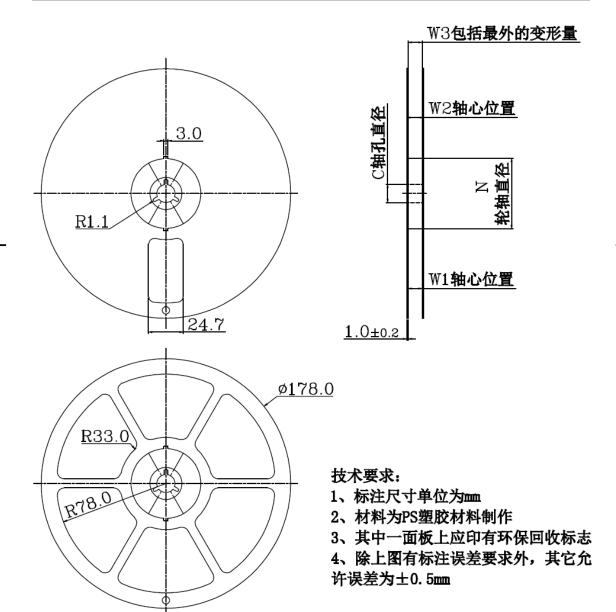
Cymphol	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	0.335	0.405	0.013	0.016
D	0.950	1.050	0.037	0.041
E	0.950	1.050	0.037	0.041
D1	0.370	0.470	0.015	0.019
E1	0.370	0.470	0.015	0.019
k	0.17MIN.		0.007MIN.	
b	0.160	0.260	0.006	0.010
С	0.010	0.090	0.000	0.004
е	0.600	0.700	0.024	0.028
L1	0.185	0.255	0.007	0.010
L2	0.030 REF.		0.001	REF.
L3	0.185	0.255	0.007	0.010

• Taping dimension

SYMBOL	A0	В0	KO	P0	P1	P2
SPEC	3.30±0.10	3. 20±0. 10	1.50±0.10	4.00±0.10	4.00±0.10	2.00±0.05
SYMBOL	T	E	F	D0	D1	W
SPEC	0.20±0.05	1.75±0.10	3.50±0.05	1.55±0.05	+0. 10 1. 10 ₋₀	8. Q0. 1

比例: 1:6

8mm&12mm 7 英寸卷盘 8mm&12mm 7" carrier tape reel


规格:蓝色7寸*8㎜

DWG NO. 2014080501

TOOLLING NO.:

DATE :20140805

Tape Size	A Max	B Min	С	D Min	N Min	W1	W2 Max	W3	
8 mm	150	1.5	4001000	20.0	50	8. 4 ^{+1. 5}	14.4	7.9Min	10.9Max
12 mm	178	1.5	13.0±0.20	20.2	50	12. 4 ^{+2.0} 0.0	18.4	7.9Min	10.9Max

