N and P－Channel Enhancement Mode Power MOSFET

Description

The HM4622 uses advanced trench technology to provide excellent $R_{\text {DS（ON）}}$ and low gate charge．This device is suitable for use as a load switch or in PWM applications．

General Features

－N－Channel
$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}<33 \mathrm{~m} \Omega$＠ $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$
$R_{\mathrm{DS}(\mathrm{ON})}<40 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=2.2 \mathrm{~V}$
－P－Channel
$V_{D S}=-20 \mathrm{~V}, I_{D}=-5.0 \mathrm{~A}$
$R_{\mathrm{DS}(\mathrm{ON})}<52 \mathrm{~m} \Omega$＠ $\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}<75 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}$
－High power and current handing capability
－Lead free product is acquired
－Surface mount pack age

Application

－PWM applications
－Load switch
－Power management

Schematic diagram

> D1 D1 D2 D2

Marking and pin assignment

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
HM4622	HM4622	SOP－8	$\varnothing 330 \mathrm{~mm}$	12 mm	2500 units

Absolute Maximum Ratings（ $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise noted）

Parameter	Symbol	N－Channel	P－Channel	Unit
Drain－Source Voltage	V_{DS}	20	-20	V
Gate－Source Voltage	V_{GS}	± 12	± 12	V
Continuous Drain Current	I_{D}	5.0	-5.0	A
Pulsed Drain Current（Note 1）	I_{DM}	20	-20	A
Maximum Power Dissipation	P_{D}	2.5	2.5	W
Operating Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}, \mathrm{T}_{\text {STG }}}$	-55 To 150	-55 To 150	${ }^{\circ} \mathrm{C}$

Thermal Characteristic

Thermal Resistance，Junction－to－Ambient（Note2）	R $_{\theta J \mathrm{~A}}$	N－Ch	89	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		P－Ch	90	

$\mathrm{N}-\mathrm{CH}$ Electrical Characteristics（ $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise noted）

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Off Characteristics						
Drain－Source Breakdown Voltage	$B V_{\text {DSs }}$	$\mathrm{V}_{G S}=0 \mathrm{~V} \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	20	22	－	V
Zero Gate Voltage Drain Current	$\mathrm{I}_{\text {DSS }}$	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	－	－	1	$\mu \mathrm{A}$
Gate－Body Leakage Current	Igss	$\mathrm{V}_{G S}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	－	－	± 100	nA
On Characteristics（Note 3）						
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\text {（th）}}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{l}_{\mathrm{D}}=250 \mu \mathrm{~A}$	0.5	0.65	1.2	V
Drain－Source On－State Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\mathrm{V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}$	－	22	33	$\mathrm{m} \Omega$
		$V_{G S}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~A}$	－	33	40	$\mathrm{m} \Omega$
Forward Transconductance	gFs	$V_{D S}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=5 \mathrm{~A}$	－	15	－	S
Dynamic Characteristics（Note4）						
Input Capacitance	$\mathrm{C}_{\text {lss }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ \mathrm{~F}=1.0 \mathrm{MHz} \end{gathered}$	－	255	－	PF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		－	45	－	PF
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		－	35	－	PF
Switching Characteristics（Note 4）						
Turn－on Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{O})}$	$\begin{gathered} V_{D D}=15 \mathrm{~V}, R_{L}=3 \Omega \\ V_{G S}=10 \mathrm{~V}, R_{G E N}=3 \Omega \end{gathered}$	－	4.5	－	nS
Turn－on Rise Time	t_{r}		－	2.5	－	nS
Turn－Off Delay Time	$\mathrm{t}_{\text {d（off）}}$		－	14.5	－	nS
Turn－Off Fall Time	t_{f}		－	3.5	－	nS
Total Gate Charge	Q_{g}	$\begin{gathered} V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}, \\ V_{G S}=10 \mathrm{~V} \end{gathered}$	－	5.2	－	nC
Gate－Source Charge	Q_{gs}		－	0.85	－	nC
Gate－Drain Charge	$\mathrm{Qg}_{\mathrm{gd}}$		－	1.3	－	nC
Drain－Source Diode Characteristics						
Diode Forward Voltage（Note 3）	$\mathrm{V}_{\text {SD }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=5 \mathrm{~A}$	－	－	1.2	V
Diode Forward Current（Note 2）	I_{s}		－	－	5	A

P－CH Electrical Characteristics（ $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise noted）

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Off Characteristics						
Drain－Source Breakdown Voltage	$B V_{\text {DSs }}$	$V_{G S}=0 \mathrm{~V} \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	－20	－22	－	V
Zero Gate Voltage Drain Current	Idss	$V_{D S}=-24 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V}$	－	－	－1	$\mu \mathrm{A}$
Gate－Body Leakage Current	IGss	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	－	－	± 100	nA
On Characteristics（Note 3）						
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{l}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	－0．45	－0．7	－1	V
Drain－Source On－State Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$V_{G S}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-4.1 \mathrm{~A}$	－	39	52	$\mathrm{m} \Omega$
		$\mathrm{V}_{G S}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-4 \mathrm{~A}$	－	58	75	$\mathrm{m} \Omega$
Forward Transconductance	g_{FS}	$V_{D S}=-5 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=-4.1 \mathrm{~A}$	5.5	－	－	S
Dynamic Characteristics（Note4）						
Input Capacitance	$\mathrm{C}_{\text {lss }}$	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{~F}=1.0 \mathrm{MHz} \end{gathered}$	－	700	－	PF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		－	120	－	PF
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		－	75	－	PF
Switching Characteristics（Note 4）						
Turn－on Delay Time	$\mathrm{t}_{\text {d（on）}}$	$\begin{aligned} & V_{D D}=-15 \mathrm{~V}, R_{L}=3.6 \Omega \\ & V_{G S}=-10 \mathrm{~V}, R_{G E N}=3 \Omega \end{aligned}$	－	9	－	nS
Turn－on Rise Time	t_{r}		－	5	－	nS
Turn－Off Delay Time	$\mathrm{t}_{\text {d（off）}}$		－	28	－	nS
Turn－Off Fall Time	t_{f}		－	13.5	－	nS
Total Gate Charge	Q_{g}	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-4 \mathrm{~A}, \mathrm{~V}_{G S}=-10 \mathrm{~V}$	－	14	－	nC
Gate－Source Charge	Q_{gs}		－	3.1	－	nC
Gate－Drain Charge	Q_{gd}		－	3.	－	nC
Drain－Source Diode Characteristics						
Diode Forward Voltage（Note 3）	$\mathrm{V}_{\text {SD }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{IS}_{\mathrm{S}}=-1 \mathrm{~A}$	－	－	－1．2	V

Notes：

1．Repetitive Rating：Pulse width limited by maximum junction temperature．
2．Surface Mounted on FR4 Board， $\mathrm{t} \leq 10 \mathrm{sec}$ ．
3．Pulse Test：Pulse Width $\leq 300 \mu s$ ，Duty Cycle $\leq 2 \%$ ．
4．Guaranteed by design，not subject to production

N －Channel Typical Electrical and Thermal Characteristics（Curves）

Figure 1：Switching Test Circuit

Figure 3 Output Characteristics

Figure 5 Drain－Source On－Resistance

Figure 2：Switching Waveforms

Vgs Gate－Source Voltage（V）
Figure 4 Transfer Characteristics

Figure 6 Drain－Source On－Resistance

Figure7 Rdson vs Vgs

Figure 9 Gate Charge

Vds Drain－Source Voltage（V）
Figure 11 Capacitance vs Vds

Figure 8 Drain－Source On－Resistance

Figure 10 Source－Drain Diode Forward

Vds Drain－Source Voltage（V）
Figure 12 Safe Operation Area

Figure 13 Normalized Maximum Transient Thermal Impedance

P－Channel Typical Electrical and Thermal Characteristics

Figure 1：Switching Test Circuit

Figure 3 Power Dissipation

Figure 5 Output CHARACTERISTICS

Figure 2：Switching Waveforms

Figure 4 Drain Current

Figure 6 Drain－Source On－Resistance

Vgs Gate－Source Voltage（V）
Figure 7 Transfer Characteristics

Figure 9 Rdson vs Vgs

Figure 11 Gate Charge

Figure 8 Drain－Source On－Resistance

Figure 10 Capacitance vs Vds

Figure 12 Source－Drain Diode Forward

Figure 13 Safe Operation Area

Figure 14 Normalized Maximum Transient Thermal Impedance

SOP－8 Package Information

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
c	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
e	$1.270(\mathrm{BSC})$		$0.050(\mathrm{BSC})$	
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

Attention

■ Any and all H\＆M SEMI products described or contained herein do not have specifications that can handle applications that require extremely high levels of reli ability，such as life－support systems，aircraft＇s control systems，or other applications whose failure can be re asonably expected to result in serious physical an d／or material damage．Consult with your H\＆M SEMI representative nearest you before using any H\＆M SEMI products described or contained herein in such applications．
－H\＆M SEMI assumes no responsi bility for eq uipment failures that result from using products at values that exceed，even momentarily，rated values（such as maximum ratings，operating condition ranges，or other parameters） listed in products specifications of any and all H\＆M SEMI products described or contained herein．
■ Specifications of any and all H\＆M SEMI products described or contained herein stipulate the performance，characteristics， and functions of the described products in the independent state，and are not guarantees of the performance，characteristics， and functions of the described products as mounted in the customer＇s products or equipment．To verify symptoms and states that cannot be evalu ated in an independent device，the cu stomer s hould al ways evalu ate and test devices mounted in the customer＇s products or equipment．
■ H\＆M Semiconductor CO．，LTD．strives to supply high－quality high－reliability products．However，any and all semiconductor products fail with some probab ility．It is possible that these proba bilistic failures cou Id give ris e to accidents or events that could endanger human lives，that could give rise to smoke or fire，or that could cause damage to other propert y ．When designing equipment，adopt safety measures so that these kinds of acci dents or events cannot occur．Such measures include but are not li mited to protective circuits and error prevention circuits for safe design，redundant design，and structural design．
■ In the eve nt that an y or all H\＆M SEMI products（including technical data，services）described or contained herein are controlled under any of ap plicable local export control laws and regulations，such products must not be exp orted without obtaining the export license from the authorities concerned in accordance with the above law．
－No part of this publication may be reproduced or transmitted in any form or by any means，electronic or mechanical，including photocopying and recording，or any information storage or retrieval system，or otherwise，without the prior written permission of H\＆M Semiconductor CO．，LTD．
■ Information（including circuit diagrams and circuit parameters）herein is for example only；it is n ot guaranteed for volume production．H\＆M SEMI believes information herein is a ccurate and reliable，but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties．
■ Any and all inf ormation described or contai ned herein a re subject to cha nge without notice due to product／technology improvement，etc．When designing equipment，refer to the＂Delivery Specification＂for the H\＆M SEMI product that you intend to use．
－This catalog provides information as of Sep．2010．Specifications and information herein are subject to change without notice．

