

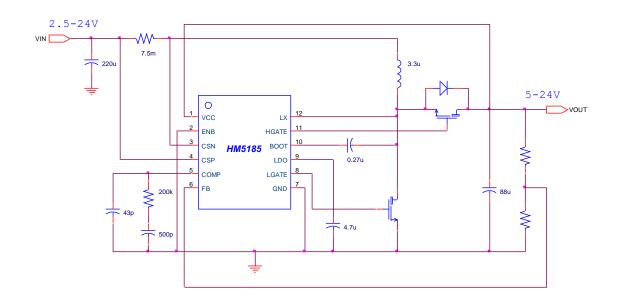
高压低功耗同步升压控制芯片 HM5185

功能特性简述

- 高效率>90%
- 同步 N型 MOSFET 整流
- VCC 宽输入范围: 2.5V 至 24V
- 1.5%的输出电压精度
- 高位电流采样
- 空载时低静态电流: 60uA
- 内置软启动
- 开关频率 600/900KHz
- 美断电流<8uA
- PWM 峰值电流模控制
- 轻载自动切换 Burst 模式
- 逻辑控制使能端
- Cycle-By-Cycle 峰值电流限制
- 工作环境温度范围: -40℃~125℃
- DFN12L\TSSOP14L 封装

应用

- 移动电话
- 工业供电
- 通讯硬件

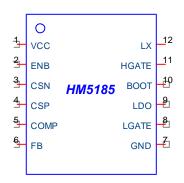

概述

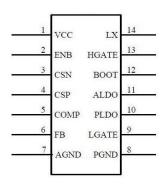
HM5185是一款恒定频率 PWM 电流模控制,驱动 N 型功率管的高效同步升压芯片。同步整流提高效率,减小功耗,并且减轻散热要求,所以 HM5185可以应用在大功率环境。

2.5V 到 24V 的输入电压支持供电系统和电池的较宽范围应用。根据负载情况的变化自动切换工作模式,在轻载 Burst 模式下静态电流低至 60uA。

HM5185 内置峰值电流限制和输出过压保护。在 ENB 逻辑控制为高时,芯片电流降至 8uA 以下。

典型应用电路



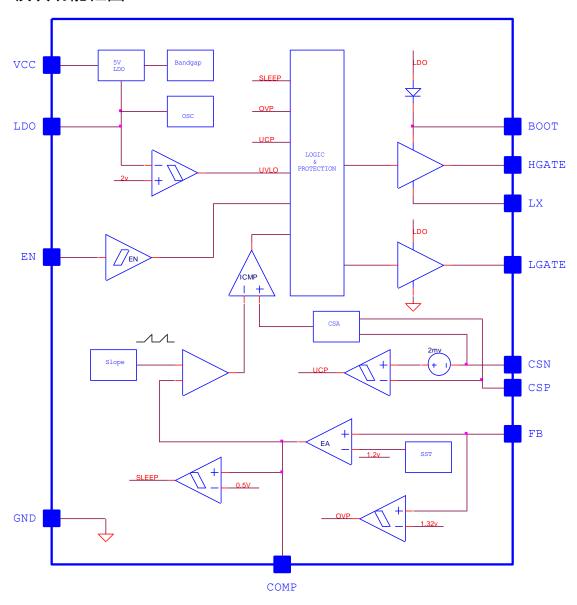


管脚定义

HM5185 DFN12L封装

HM5185 TSSOP-14 封装

DFN12L 封装


序号	符号	I/O	描述
1	VCC	I	输入电源
2	ENB	I	使能端
3	CSN	I	高位电流检测输入负端
4	CSP	I	高位电流检测输入正端
5	COMP	О	环路补偿管脚
6	FB	I	输出端反馈电压
7	GND	-	模拟地
8	LGATE	О	同步低位功率 MOSFET 驱动输出
9	LDO	О	5V 内置稳压输出
10	BOOT	-	同步高位功率 MOSFET 驱动电源正端
11	HGATE	О	同步高位功率 MOSFET 驱动输出
12	LX	-	同步高位功率 MOSFET 驱动电源负端

TSSOP-14 封装

序号	符号	I/O	描述
1	VCC	I	输入电源
2	ENB	I	使能端
3	CSN	I	高位电流检测输入负端
4	CSP	I	高位电流检测输入正端
5	COMP	О	环路补偿管脚
6	FB	I	输出端反馈电压
7	AGND	-	模拟地
8	PGND	_	功率地
9	LGATE	О	同步低位功率 MOSFET 驱动输出
10	PLDO	О	功率 5V 内置稳压输出
11	ALDO	О	模拟 5V 内置稳压输出
12	BOOT	_	同步高位功率 MOSFET 驱动电源正端
13	HGATE	О	同步高位功率 MOSFET 驱动输出
14	LX	_	同步高位功率 MOSFET 驱动电源负端

模块功能框图

最大工作范围

		最小	最大	单位
	VCC, EN	-0.3	40	
	BOOT-LX, LDO	-0.3	6	
电压范围	FB	-0.3	6	V
	HGATE-LX, LGATE	-0.3	LDO	
	CSP	-0.3	40	
	LX	-2	40	
工作结温		-40	125	$^{\circ}$ C

推荐工作条件

		最小	最大	单位
	VCC	2.5	24	
	BOOT-LX, LDO	0	5	
电压范围	FB	0	5	V
	HGATE-LX, LGATE	0	LDO	
	CSP-CSN	-0.2	0.2	
	LX	-2	40	
工作结温		0	125	$^{\circ}$

电气参数

2.5V<VCC<24V,0℃<T_j<125℃,典型情况 Temp=25℃ VCC=12V

参数	符号	测试条件	最小	典型	最大	单位
输入电压电流						
VCC 供电电压	VCC		2.5		24	V
VCC 供电电流	I _{VCC}	Burst 休眠模式,		60		uA
		FB=1.25V,空载				
		EN=0V		8		uA
FB 电压调整	·				·	
调整反馈电压	V_{FB}			1		V
反馈电压精度			-1.5%		+1.5%	
FB 负载调整率		CSP-CSN		0.013		%/mV
		从 0 到 120mV				
FB 电压调整率		VCC 从 3 到 40V		0.002		%/V
LDO 输出	·				·	
LDO 输出电压	LDO	5.2V <vcc<24v, ldo<="" td=""><td></td><td>5</td><td></td><td>V</td></vcc<24v,>		5		V
		负载 0 到 50mA				
LDO 欠压锁定	$V_{\rm UVLO}$	LDO 上升		2.1		V
		LDO下降		2		V

ENB 使能	V_{ENB}	ENB 高电平	2			V
		ENB 低电平			0.5	V
CSP 使能	V_{CSP}	CSP 高电平		2.2		V
		CSP 低电平		2.1		V
振荡器和驱动输出						
开关振荡频率	Fosc			600/900		kHz
最大占空比	D_{MAX}			83		%
最小开启时间	T_{MIN}			80		ns
驱动输出上升时	T_R	C_{LOAD} =5nF, 10% to		20		ns
间		90%				
驱动输出下降时	$T_{\rm F}$	C_{LOAD} =5nF, 90% to		20		
间		10%				
死区时间	T_{IDLE}	$C_{LOAD}=5nF$		40		ns
保护						
FB 过压保护阈值	V_{OVP}			1.1		V
零电流保护阈值	V _{ZCD}	VCC-CS,检测电阻两 端压降		3		mV
最大峰值电流保	V_{LIM}	VCC-CS,检测电阻两		120		mV
护阈值		端压降				
内置温度保护阈	T_{TEMP}			160		$^{\circ}$ C
值						
温度迟滞	T _{HYS}			20		

功能描述

主控制回路

HM5185 采用恒定频率,电流模升压控制结构。在正常模式,底部主功率 MOSFET 在时钟置位时打开,在 ICMP 峰值电流控制比较器复位时关断。峰值电流比较器的由电感电流和误差放大器 EA 的输出触发和产生复位信号。误差放大器比较输出的反馈电压 FB 和内部的 1.2V 基准。

在底部主功率 MOSFET 关断时,顶部整流 MOSFET 开启;在电感电流临界,即将开始 反向时,顶部整流 MOSFET 断开。

LDO 输出

对顶部和底部 MOSFET 驱动和大部分内部电路供电。最大电流限制在 50mA。

关闭和启动

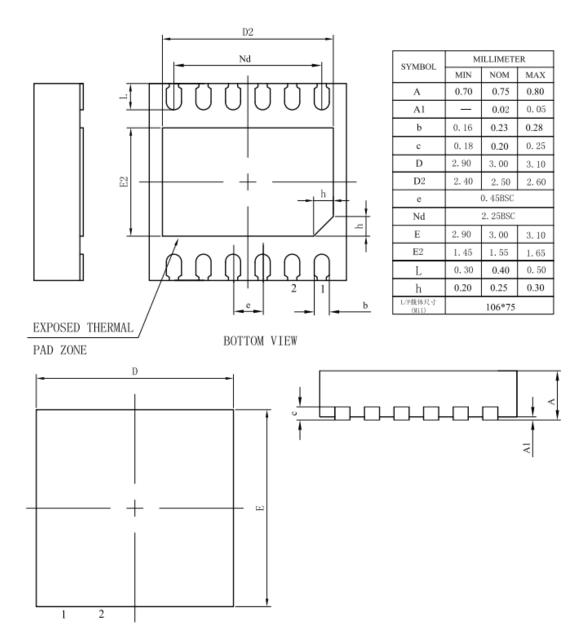
HM5185在 ENB 为高时关闭。此时芯片的功耗降到 8uA 以下。ENB 为逻辑低电平时, 芯片启动。

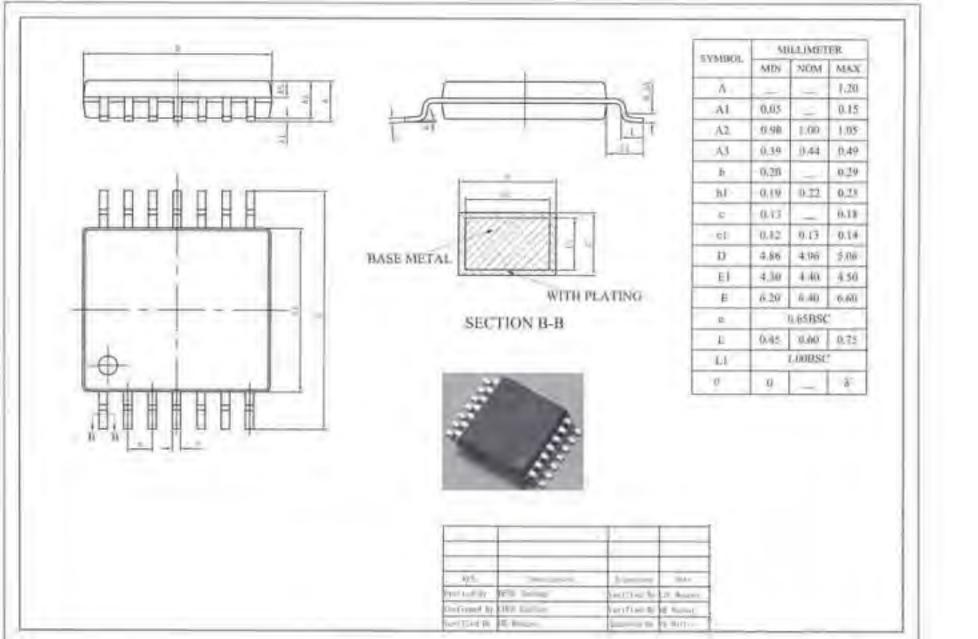
最大峰值电流限制

HM5185在正常模式工作时,外部检测电阻上的压降超过 75mV 时,PWM 控制器立即关断以防止电感电流过高。

轻载 Burst 模式

HM5185能在轻载时自动切换到 Burst 模式, 提高工作效率。


当电感的平均电流高于负载所需时,误差放大器 EA 的输出会随之降低,当 EA 的输出 低到阈值时,进入 Burst 的休眠模式,外部主 MOSFET 和整流 MOSFET 均关断。此时,HM5185 内部大部分电路也关断,总电流减小到 60uA。当输出反馈电压 FB 降低,误差放大器的输出开始升高,Burst 的休眠模式终止,环路继续正常工作。


输出过电压保护

HM5185内置过电压保护功能。当输出电压过高时,比如说负载突然移除时产生的过电压,该功能可以保护芯片本身和其他元器件。当 FB 大于 1.1V 时,该功能立即关闭 PWM 控制器,底部和整流 MOSFET 的驱动。

封装和包装尺寸

