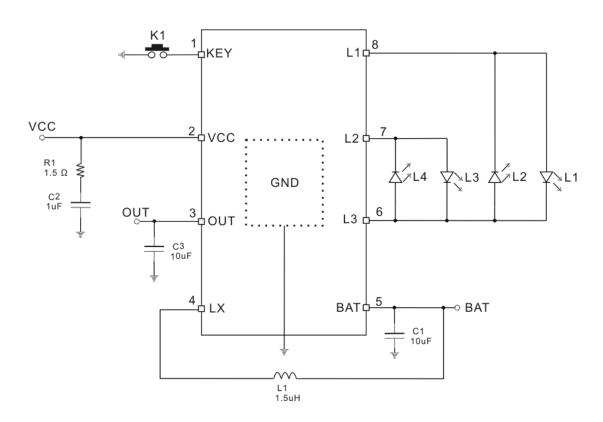


产品概述

HM5812 是一款集成锂电池充电管理、同步升压转换器、电池电量管理和保护功能的蓝牙充电座 SOC。芯片完整的功能集成使得外部应用元件极少,可以很大程度减小方案尺寸,降低 BOM 成本,同时芯片自身待机电流只有 7uA。

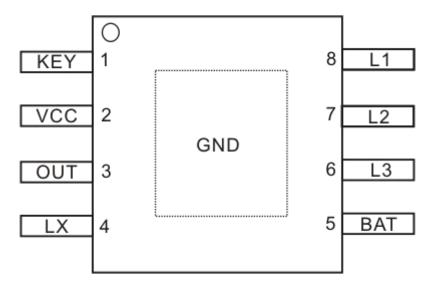
HM5812 充电电流为 0.38A,同时同步升压转换器 支持 0.8A 输出,支持自动开关机和按键开关机,自动 关机电流 5mA。

HM5812 内置电源路径管理,支持边充边放功能, 边充边放时也提供重载和短路保护,节省外置二极管的 同时,有效避免外置二极管在重载和短路时烧坏。


产品特点

- ▶ 内置带保护的电源路径管理,支持边充边放
- ▶ 自动开机+按键单击开机
- ▶ 自动关机+按键长按关机
- ▶ 自动关机电流 5mA
- ▶ 超低待机电流仅 7uA
- ▶ 充电电流 0.38A
- ▶ 放电电流 0.8A
- ▶ 预设 4.2V/4.35V 充电电压
- > 智能温度调节功能
- ▶ 输出短路保护/重载保护/输入过压保护
- ➤ ESOP-8L 封装

应用领域


- ▶ 蓝牙耳机充电座
- ▶ 手电筒
- ▶ 电池供电手持便携式设备

典型应用

管脚信息 (ESOP8)

管脚描述

管脚号	管脚名称	功能描述		
1	KEY	按键脚,单击开机,长按关机		
2	VCC	适配器 5V 输入端口		
3	OUT	升压 5V 输出端口		
4	LX	升压开关输出		
5	BAT	电池正极输入		
6	L3	LED 驱动脚		
7	L2	LED 驱动脚		
8	L1	LED 驱动脚		
Exposed	GND	芯片信号地和功率地		
PAD	GND	心川口习地作为干地		

绝对最大额定值

参数	最小值	最大值	单位
VCC	-0.3	5.5	V
其它引脚	-0.3	VCC+0.3V	V
储存环境温度	-55	150	$^{\circ}$
工作结温	-40	150	$^{\circ}$ C
功耗		0.8	W
ESD (人体模型)		4	KV

注:绝对最大额定值是指超出该范围芯片可能会损坏,如无特殊说明所有电压值都是以 GND 为参考。

电气特性

除非特殊说明, VCC=5V, Ta=25℃

符号	参数	测试条件	最小值	典型值	最大值	单位
Тотр	恒温模式结温			120		$^{\circ}$
IL	LED 显示驱动电流	BAT=3.7V		1.5		mA
充电部分						
VCC	VCC 电源电压		4.5	5	5.5	V
VCC _{OVP}	VCC 过压保护电压			6		V
VCC _{OVP_REC}	VCC 过压恢复电压			5.8		V
Існб	恒流充电电流	V _{BAT} =3.8V	0.34	0.38	0.42	Α
Itrk	涓流充电电流	V _{BAT} =2.6V	36	45	54	mA
I _{FULL}	BAT 截止充电电流		36	45	54	mA
	预设充电电压	HM5812		4.2		V
V_{BAT}		HM5812H		4.35		V
$\triangle V$ rechrg	再充电阈值电压	VBAT-VRECHRG		150		mV
Vtrk	涓流充电阈值电压			2.85		V
VTRK_HYS	涓流充电迟滞电压			150		mV
R _{ON_P}	VCC 到 OUT 路径内阻			730		mΩ
放电部分						
V UV_BAT	BAT 开启电压	VBAT上升		3.2		V
V BAT_SD	BAT 关机电压			2.8		V
BAT _{OVP}	BAT 过压保护电压			5.1		V
BAT _{OVP_REC}	BAT 过压恢复电压			4.9		V
V BAT_LOW	BAT 低电提示电压			3.2		V
ISDBY_BAT	BAT 待机电流	V _{BAT} =4.2V,耳机不在仓		7		uA
T _{ON_MIN}	最小导通时间			150		nS
D _{MAX}	最大占空比			90		%
Fop	Boost 工作频率		0.8	1	1.2	MHz
Vout	升压输出电压	ILOAD=0.5A	4.8	5.0V	5.2	V
V _{OUT_OVP}	输出电压过压保护			5.2V		V
V _{OCP}	输出短路保护电压			3.0		V
V_{HL}	输出重载保护电压			4.2		V
I _{LOAD_DET}	最小负载识别电流			12		uA
I _{OUT_OFF}	自动关机负载电流	BAT=3.7V, C _{OUT} =10uF		5		mA
T _{SD}	输出无负载关机延时			16		S
T _{KEYS}	短按按键时间				0.5	S
T _{KEYL}	长按按键时间		2			S

应用指南

开关机和自动检测

HM5812 可以自动检测负载接入并开机,自动识别最小负载电流为 12uA。当负载电流小于 5mA 时延时 16S 后自动关机;同时也支持按键单击开机和长按关机,单击时按键时间须小于 500mS,长按时按键时间须大于于 2S。关机后,若耳机不在仓待机电流仅 7uA。

内部 BAT 与 OUT 之间有一个 80KΩ的上拉电阻,芯片自动关机之后,若输出空载,则 OUT 电压等于电池电压,若输出接有耳机,则根据耳机待机电流输出电压会不一样。若耳机放入后不能自动识别开机,可能是耳机待机电流小于 12uA 而导致不能识别,这种情况可以在 OUT 脚到地额外增加一颗电阻,保证在最低电池电压情况下,额外增加的电阻所消耗的电流与耳机电流之和大于 12uA。如果耳机电流较大,导致HM5812 关机后输出电压很低而不能满足电压要求,可以在 BAT 和 OUT 之间额外增加一颗上拉电阻,阻值大小根据实际情况调整。

充电电流

如果电池电压低于 2.85V,为了延长电池寿命,HM5812 工作在涓流充电模式,涓流充电电流为 45mA;若电池电压高于 2.85V,HM5812 工作在恒流充电模式,恒流充电电流为 0.38A;当电池电压达到 4.2V 后,HM5812 工作在恒压充电模式,充电电流逐渐减小,当充电电流减小为 45mA 时,充电过程结束。

边充边放

HM5812 内置电源路径管理,支持边充边放功能,外部有适配器插入且 OUT 有负载接入时,适配器在给 BAT 充电的同时给 OUT 负载提供电源,为提高安全性,边充边放路径也提供重载和短路保护,边充边放时若 OUT 发生重载或短路保护,边充边放路径关闭,须将负载全部移除后保护将会自动恢复,保护发生时电池充电的路径仍然正常给电池充电而不受影响。

智能温度控制

HM5812内部集成了智能温度控制功能,当芯片温度高于120℃时,会自动减小充电或放电电流,从而控制芯片温度。

电池低压保护与低电提醒

工作时如果电池电压低于3.2V,则L1会以2HZ频率快闪提醒电池电量较低,当电池电压低于2.8V则将输出关闭,HM5812进入待机模式。

输出重载与短路保护

升压输出发生重载或者短路后,升压输出会一直关闭,需要负载移除后再重新接入,或者单击按键使升压恢复。

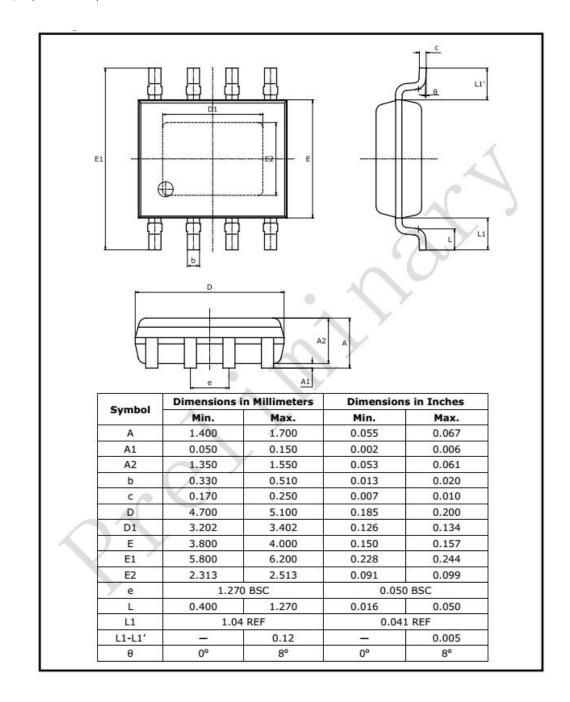
充电状态指示灯

输入USB插入电源时L1~L4会依次跑马点亮,然后再根据电池电量指示充电状态,达到电量的指示灯常亮,当前电量的指示灯以1Hz频率闪烁,充满电后L1~L4全亮。

VBAT	L1	L2	L3	L4
4.2V	亮	亮	亮	亮
4.0V-4.2V	亮	亮	亮	1HZ闪烁
3.8V-4.0V	亮	亮	1HZ闪烁	灭
3.6V-3.8V	亮	1HZ闪烁	灭	灭
<3.6V	1HZ闪烁	灭	灭	灭

放电状态指示灯

升压启动后,L1~L4 会根据电池电压状况实时指示电池电量,当电池电压低于 3.2V 时,L1 会以 2HZ 频率快闪进行低电提示。


VBAT	L1	L2	L3	L4
3.9V-4.2V	亮	亮	亮	亮
3.9V-3.7V	亮	亮	亮	灭
3.7V-3.5V	亮	亮	灭	灭
3.5V-3.2V	亮	灭	灭	灭
3.2V-2.8V	2HZ闪烁	灭	灭	灭
<2.8V	灭	灭	灭	灭

PCB LAYOUT 注意事项

- 1、BAT 电容尽量靠近芯片并与芯片放在 PCB 的同一面;电容与 BAT 和地线的接触走线尽量宽;
- 2、OUT 电容尽量靠近芯片,其地线尽量接在大面积地线上,不要经过较小的地线再到芯片和大面积地;
- 3、电感到 SW 引脚的走线尽量短而粗;
- 4、根据实际需要,建议在 BAT 和 OUT 之间预留一电阻位,OUT 与地之间预留一电阻位。

封装信息(ESOP8)

若本公司对本文档进行修正与更新,恕不另行通知。