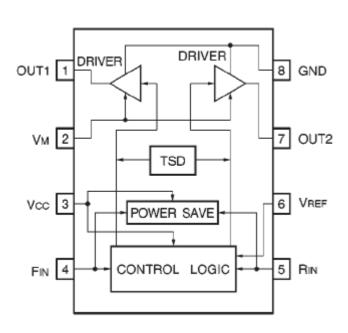


正反转马达驱动电路 JO84:9H

概述:

<A* &, +: 是一块正反转马达驱动电路,两种逻辑输入方式可控制马达的正转、反转、停止、中断等。内置马达停止时省电电路及热保护电路。最大驱动电流达1.0A。广泛用于VCRs及音频设备等电机的驱动中。</p>

JO84:9H采用SOP8的封装形式封装。


主要特点:

- 内置马达停止时省电电路
- 输出电压可随V_{REF}电压任意设定
- TTL工作界面
- 内置热保护电路

应用:

● VCRs 及音频设备

功能框图及管脚排列图:

管脚描述:

管脚号	符号	描述		
1	OUT1	马达输出		
2	V _M	马达电源		
3	V _{CC}	电源		
4	F _{IN}	逻辑输入		
5	R _{IN}	逻辑输入		
6	V_{REF}	高电平输出电压设定		
7	OUT2	马达输出		
8	GND	地		

极限值: (Ta=25°C)

参数名称	符号	数值	单位
电源电压	Vcc	18	V
功耗	P _D	650 *1	mW
输出电流	I _{OMax}	1000 *2	mA
工作温度	Topr	-20∼+75	°C
贮存温度	Tstg	-55∼+150	°C

^{*} 安装于 50×50×1.6mm 环氧树脂下班板上

推荐工作条件: (Ta=25°C)

参数名称	符号	最小	典型	最大	单位
电源电压	Vcc	4.5		15	V
马达电源电压	V _M	4.5		15	V
输出高电平电压	V _{REF}	4.5		15	V

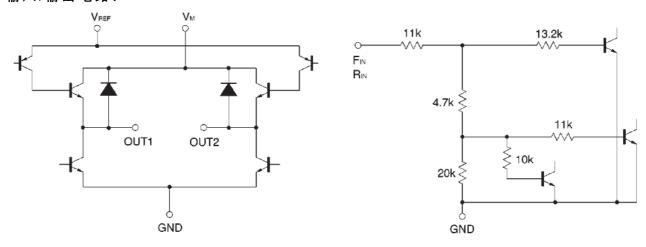
^{*1} 高于 25℃, 温度每升高 1℃, 功耗降低 5.2mW

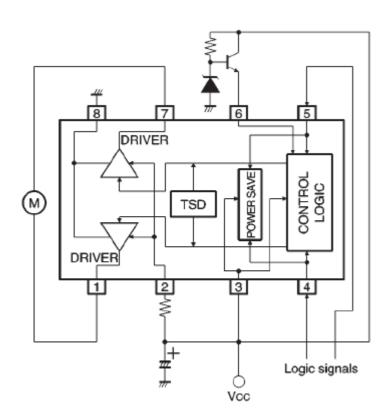
^{*2} 不能超过 P_D 或 ASO的数值

电特性:

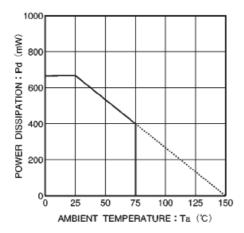
(若无其它规定: Ta=25°C, $V_{CC}=9V$, $V_{M}=9V$, $V_{REF}=9V$)

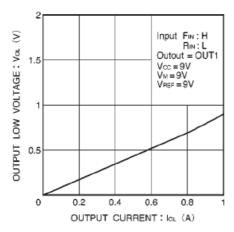
参数名称	符号	测试条件	最小	典型	最大	单位
工作电流 1	Icc1	正转、反转状态	12	24	36	mA
工作电流 2	Icc2 中断状态		29	48	67	mA
待机电流	Ist	待机状态			15	μΑ
V _{REF} 端陷电流	IREF	正转、反转状态 Io=200mA	6	12	18	mA
输入高电平电压	V_{IH}		2.0			V
输入低电平电压	$V_{\rm IL}$				0.8	V
输入高电平电流	I _{IH}	$V_{IN} = 2.0 V$	45	90	135	μΑ
输出饱和电压	V _{CE}	Io=200mA 晶体管输出电压(高、 低)的总和		1.0	1.5	V

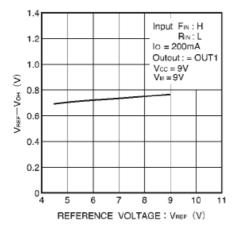

输入/输出真值表:

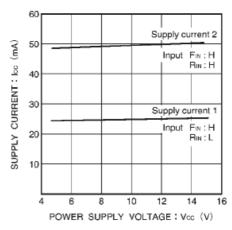

F _{IN}	R _{IN}	OUT1	OUT2	工作状态
Н	L	Н	L	正转
L	Н	L	Н	反转
Н	Н	L	L	中断
L	L	开	开	待 机

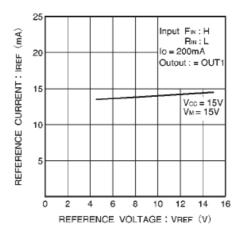
应用图:

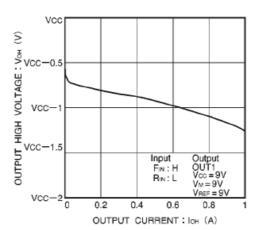

输入/输出电路:



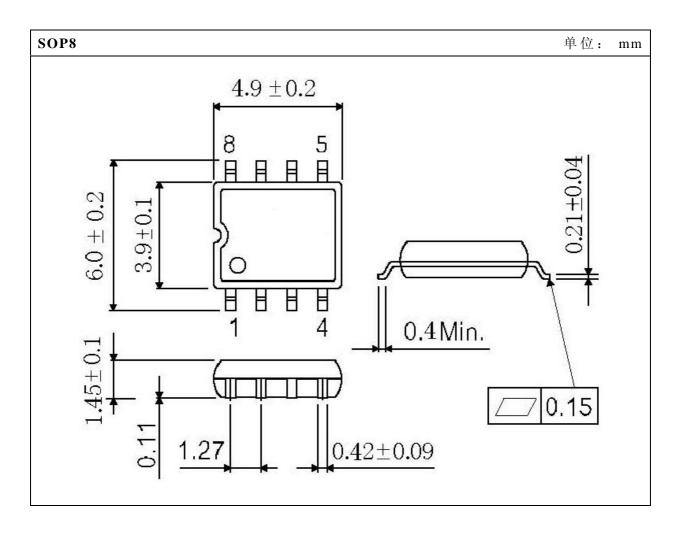

特性曲线:


Thermal derating


Output low level voltage vs. output current


VREF-VOH voltage vs. VREF reference voltage

Supply current vs. power supply voltage


VREF reference current vs. VREF reference voltage

Output high level voltage vs. output current

封装外形图:

