

概述

HM7135 是一种低压差、线性降压、固定输出电流的 LED 恒流驱动器。

除 LED 外,HM7135 无需外接其它元器件即可构成一个恒流输出的 LED 驱动电路。

HM7135 内置过热保护功能,可有效保护芯片,避免结温超过 120℃ 时因过热而造成损坏。HM7135 还集成了 LED 短路保护、电源欠压保护功能。此外,HM7135 自带软启动功能。

HM7135 可提供多个规格的输出电流 供客户选择,输出电流可以从 100mA 到 380mA,步长为 10mA,并可通过多芯片 并联的方式扩展 LED 的电流驱动能力。

HM7135 采用 SOT-89-3 的封装形式。

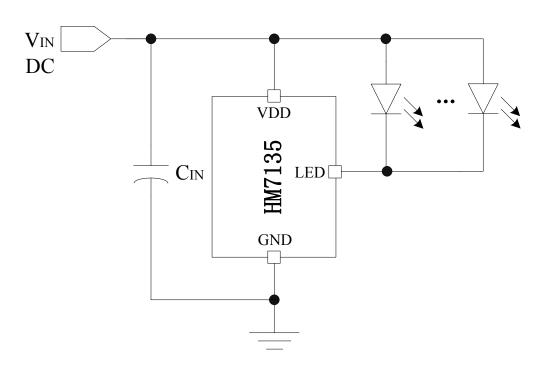
特点

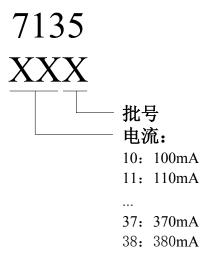
- ▶ 电源电压: 2.7V~5.5V
- ➤ 输出电流: 100mA 到 380mA
- ➤ 低压差: 150mV@350mA
- ➤ 输出电流精度: 优于±5%
- ➤ 过热保护阈值: 120°C
- ▶ 欠压保护: 2.5V
- ➤ LED 短路保护
- ▶ 软启动

应用领域

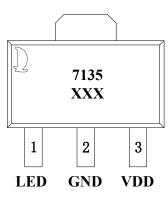
- ▶ 线性 LED 照明驱动
- ➤ LED 手电筒、LED 台灯、LED 矿灯、 LED 指示灯等

典型应用电路图




图 1: HM7135 典型应用电路图

订货信息


产品型号

丝印

封装及管脚分配

SOT-89-3

管脚定义

管脚号	管脚名称	管脚类型	描述
1	LED	输出	LED 脚,接 LED 阴极
2	GND	输入	电源地
3	VDD	输入	电源电压

内部电路方框图

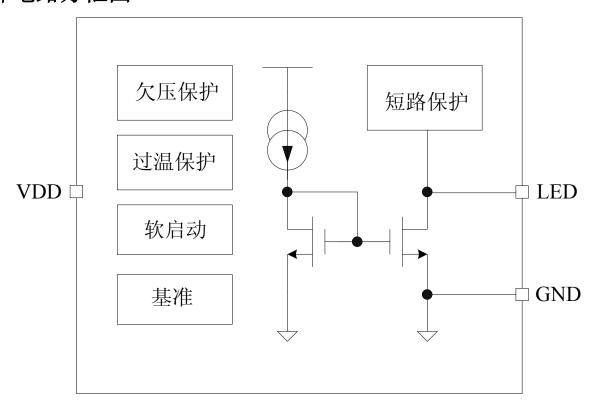


图 2: HM7135 的内部电路方框图

极限参数(注1)

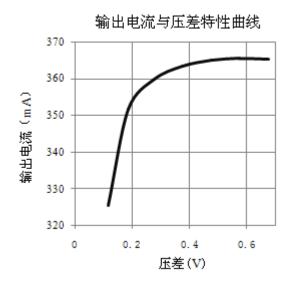
参数	符号	描述	最小值	最大值	单位
电压	V_{MAX}	VDD 和 LED 端的最大电压值		7	V
电流	I_{LED_MAX}	LED 脚最大电流		500	mA
最大功耗	P _{SOT-89-3}	SOT-89-3 封装最大功耗		0.5	W
温度	$T_{\mathbf{A}}$	工作温度范围	-20	85	°C
	T_{STG}	存储温度范围	-40	120	°C
	T_{SD}	焊接温度范围(时间小于30秒)	230	240	°C
ESD	V _{ESD}	静电耐压值 (人体模型)		2000	V

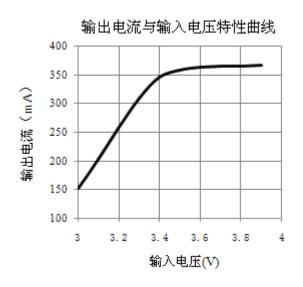
注 1: 超过上表中规定的极限参数会导致器件永久性损坏。而工作在以上极限条件下可能会影响器件的可靠性。

电特性

除非特别说明, $V_{\rm IN}$ =5V, $T_{\rm A}$ =25 $^{\circ}{\rm C}$

参数	符号	测试条件	最小值	典型值	最大值	单位	
电源电压							
电源电压范围	V _{IN}	I _{LED} =350mA	2.7		5.5	V	
低压保护阈值	V_{UVLO}	I _{LED} =350mA,逐步减小 V _{IN}	2.3	2.5	2.7	V	
电源电流							
静态电流	I_{DDQ}	V _{IN} =5.0V		250		uA	
输出电压							
输出电压差	$\triangle V_{\mathrm{O}}$	输出电流为设定值的 90%		150		mV	
过温保护							
过温保护阈值	T_{OTP}			120		°C	


电特性(接上一页)


除非特别说明, V_{IN}=5V, T_A=25°C

参数	符号	测试条件	最小值	典型值	最大值	单位
输出电流						
输出电流范围	I_{LED}	V _{IN} =3.6V	100		380	mA
输出电流精度	$\triangle I_{LED} / I_{LED}$	△V₀大于 100mV	-5		5	%
负载调整率		V _{IN} =3.6V, V _{LED} 从 0.2V 到 3.0V 变化			2	mA/V
线性调整率		V _{IN} 从 3.0V 到 5.0V 变化			2	mA/V

典型曲线

除非特别说明, $V_{IN}=5V$, $T_A=25$ °C

应用指南

工作原理

HM7135 是一款线性降压型恒流 LED 驱动芯片。

除 LED 外,HM7135 无需外接其它元件即可提供 100mA 到 380mA 稳定的输出电流。

芯片内部包括软启动电路、过温保护 电路、参考电压电路、欠压保护、LED 短 路保护电路以及功率管。

当输入电压较高时,或者输出电流较大时,芯片上消耗的功耗较大,芯片会进入过热保护状态,降低输出电流,可有效保护芯片,避免结温超过120°C时因过热而造成损坏。

HM7135 自带软启动功能,该功能可以防止芯片在上电瞬间出现 LED 亮度的闪烁。

HM7135 可通过多个并联的方式扩展 LED 的电流驱动能力,如图 3 所示:

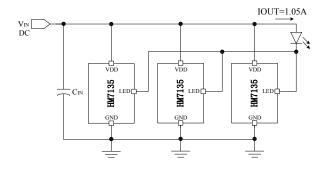
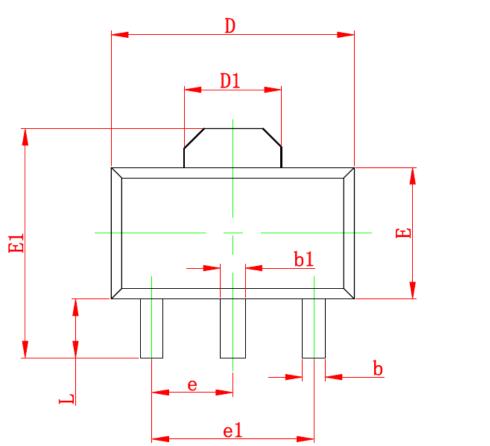
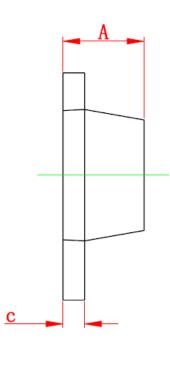


图 3: HM7135 的并联应用

PCB 布图注意事项

PCB 布图时在HM7135 的 VDD 引脚加一个 4.7uF 左右的滤波电容,且该电容应尽可能靠近 VDD 引脚和地。


一方面,该滤波电容可以减小系统上 电时 VDD 引脚的电压尖峰,避免 IC 因过 压而损坏,


另一方面,当 IC 进入过温保护状态时,该滤波电容可以避免在电源 VDD 上出现因输出电流波动而导致的大的纹波。

封装信息

SOT-89-3 封装外形尺寸:

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550 REF.		0.061 REF.		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP.		0.060 TYP.		
e1	3.000 TYP.		3.000 TYP. 0.118 TYP.		TYP.
L	0.900	1.200	0.035	0.047	