双高速 低压差 CMOS 电压稳压器

<A9182系列

■ 产品概述

JO9182系列是使用CMOS技术开发的双高速、低压差,高精度输出电压,低消耗电流正电压型电压稳压器。由于内置有低通态电阻晶体管,因而压差低,能够获得较大的输出电流。为了使负载电流不超过输出晶体管的电流容量,内置了过载电流保护电路、短路保护电路。每一个电压调整器可独立通过修条来调整输出电压,电压输出范围为1.3V到5.0V。每一个电压调整器可独立使能,因而降低了系统功耗。<A9182系列采用SOT-26等小型封装,故可高密度安装。

■ 产品特点

可选择输出电压 可以在 1.3~6.0V 的范围内选择, 步进为 0.05 V

输出电压精度高 可达±2.0% 精度

输入输出压差低 200 mV 典型值(输出为 3.0V 的产品, I_{OUT}=100mA 时)

高纹波抑制比 70dB (1 kHz) 消耗电流少 25μA (TYP.)

最大输出电流 可输出 300mA (V_{IN} ≥ V_{OUT} + 1v)

待机电流 小于 0.1μΑ

内置保护 内置过流保护和短路保护电路 采用小型封装 SOT-26 以及客户要求的封装

■ 用途

■ 封装

S0T-26

移动电话

无绳电话及广播通信设备 照相机、视频录制设备

便携式游戏机 便携式AV设备

PDAs

■ 功能框图

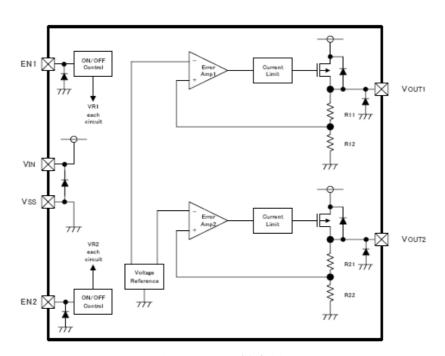


图 1 < A9182 功能框图

■ 绝对最大额定值

项目	符号	绝对最大额定	单位	
输入电压	V _{IN}	V _{SS} -0.3∼V _{SS} +10		
	V_{EN}	V _{SS} -0.3∼V _{IN} +0.3		V
输出电压	V _{OUT}	V_{SS} -0.3 \sim V_{IN} +0.3		
输出电流	I _{OUT1} +I _{OUT2}	700		mA
		SOT-26	250	
容许功耗	F许功耗 P _D			mW
工作温度	Topr	-40∼+85		%0
保存温度	Tstg	-40∼+125		°C

■ 电气特性

项目	符号	条件	最小值	典型值	最大值	单位	测试 电路
输出电压*1	V _{OUT(E)}	V _{IN} =V _{OUT(S)} +1.0 V, I _{OUT} =30 mA	V _{OUT(S)} ×0.98	V _{OUT(S)}	V _{OUT(S)} ×1.02	V	1
输出电流*2	I _{OUT}	V _{IN} ≥V _{OUT(S)} +1.0 V	300 *5	_	_	mA	1
输入输出压差		I _{OUT} =50 mA	_	0.06	0.10	V	
*3	V_{drop}	I _{OUT} =100 mA	_	0.20	0.30	V	
输入稳定度	$\frac{\Delta V_{OUT1}}{\Delta V_{IN} \bullet V_{OUT}}$	V _{OUT(S)} +0.5 V ≤V _{IN} ≤8 V I _{OUT} =30 mA	_	0.01	0.20	%/V	1
负载稳定度	ΔV_{OUT2}	$V_{IN}=V_{OUT(S)}+1.0 \text{ V}$ 1.0 mA $\leq I_{OUT} \leq 100 \text{ mA}$	_	15	50	mV	
输出电压 温度系数*4	$\frac{\Delta V_{OUT}}{\Delta Ta \bullet V_{OUT}}$	$V_{IN}=V_{OUT(S)}+1.0 \text{ V, } I_{OUT}=10 \text{ mA}$ -40°C ≤ Ta ≤85°C	_	±100	_	ppm/°C	
工作消耗电流	I _{SS1}	V _{IN} =V _{OUT(S)} +1.0 V	_	25	40	μA	2
关断电流	I _{STB}	$V_{IN}=V_{EN}=V_{OUT(T)}+1V$, $V_{EN}=VSS$	_	0.01	0.1	μA	3
输入电压	V _{IN}		2.0	_	10	V	_
纹波抑制率	PSRR	$V_{IN}=V_{OUT(S)}+1.0 \text{ V}, \text{ f=1 kHz}$ $Vrip=0.5 \text{ Vrms}, I_{OUT}=30 \text{ mA}$	_	70	_	dB	5
短路电流	I _{short}	$V_{IN}=V_{OUT(S)}+1.0 V,$ $V_{IN}=V_{EN}$	_	30	_	mA	1
电流限制*5	llim	$V_{IN}=V_{EN}=V_{OUT(T)}+1V$	-	450	-	mA	1
EN 最小高电平	V_{CEH}		1.3		VIN	V	4
EN最小低电平	V _{CEL}				0.25	V	4
EN 端"高"电流	ICEH	V _{IN} =V _{EN} =V _{OUT(T)} +1V	-0.1		0.1	μA	4
EN 端"低"电流	ICEL	$V_{IN}=V_{EN}=V_{OUT(T)}+1V$, $V_{EN}=VSS$	-0.1		0.1	uA	4

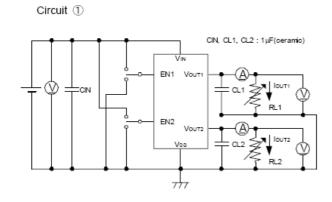
^{*1.} V_{OUT(S)}: 设定输出电压值 V_{OUT(E)}:实际输出电压值

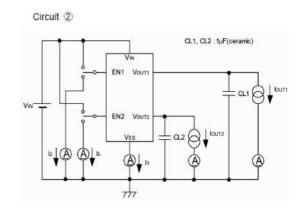
^{*2.} 缓慢增加输出电流,当输出电压为小于VouT(E) 的95%时的输出电流值

H&M 华之美半导体 SEMI www.hmsemi.com

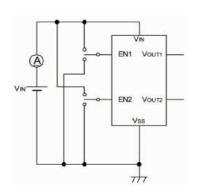
*3. $V_{drop} = V_{IN1} - (V_{OUT3} \times 0.98)$

Vouts: V_{IN} = V_{OUT(S)}+1.0 V, I_{OUT} = 100 mA 时的输出电压值

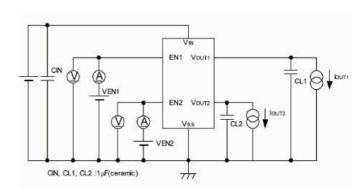

VIN1:缓慢下降输入电压,当输出电压降为Vout3 的98%时的输入电压

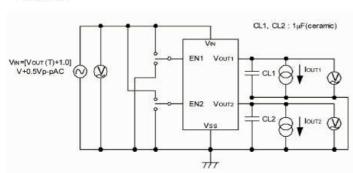

*4. 输出电压的温度变化[mV/℃]按照如下公式算出。

$$\frac{\Delta V_{OUT}}{\Delta T_a} [\text{mV/°C}]^{^{\star 1}} = \text{V}_{\text{OUT(S)}}(\text{V})^{^{\star 2}} \times \frac{\Delta V_{OUT}}{\Delta T_a \bullet V_{OUT}} [\text{ppm/°C}]^{^{\star 3}} \div 1000$$


- *1. 输出电压的温度变化 *2. 设定输出电压值 *3. 上述输出电压的温度系数
- ***5.** 意指能够得到此值为止的输出电流。由于封装容许功耗的不同,也有不能满足此值的情况发生。请注意在输出大电流时的封装容许功耗。此规格为设计保证。

■ 测试电路




Circuit (3)

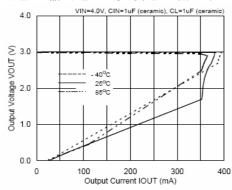
Circuit 4

Circuit (5)

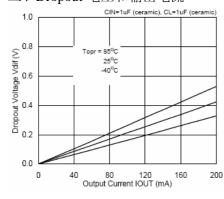
■ 典型应用电路

注意:上述连接图以及参数并不作为保证电路工作的依据,实际的应用电路请在进行充分的实测基础上设定参数。

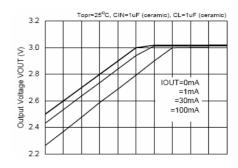
■ 使用条件

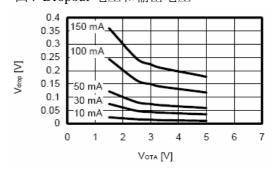

输入电容器(CIN): 1.0μF以上

输出电容器(CL): 1.0 μF以上(钽电容器)

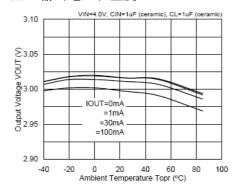

注意:一般而言,线性稳压电源因选择外接零件的不同有可能引起振荡。上述电容器使用前请确认在应用电路上不发生振荡

■ 特性曲线 (3.0V 输出)

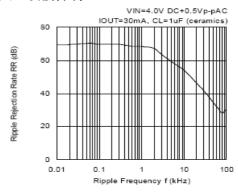

一、输出电压-输出电流(负载电流增加时)


三、Dropout 电压和输出电流

二、输出电压和输入电压

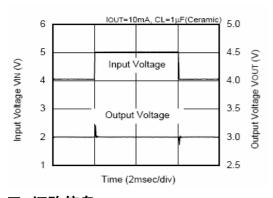


四、Dropout 电压和输出电压

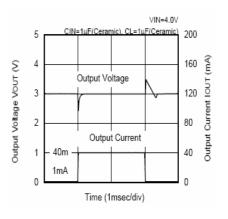


H&M 华之美半导体 SEMI www.hmsemi.com

五、输出电压和温度



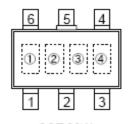
六、纹波抑制



七、瞬态响应

输入过渡响应特性

负载过渡输入响应特性


■ 订购信息

<A918212345678

数字项目	描述	符号	描述	
		Е	带下拉电阻的高有效	
1	电压调整器 1,	F	不带下拉电阻的高有效	
1	EN 类型	G	带上拉电阻的低有效	
		Н	不带上拉电阻的低有效	
		Е	带下拉电阻的高有效	
2	电压调整器 2,	F	不带下拉电阻的高有效	
۷	EN 类型	G	带上拉电阻的低有效	
		Н	不带上拉电阻的低有效	
34	电压调整器1	01~	例如: 30 代表输出电压为 3.0V	
34	输出电压	01/~	33 代表输出电压为 3. 3V	
56	电压调整器2	01~	例如: 30 代表输出电压为 3.0V	
90	输出电压	01	33 代表输出电压为 3.3V	
7	封装类型	M	S0T26	
8		R	卷带: 正向	
	器件方向	L	卷带: 反向	

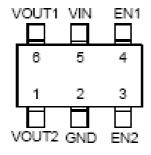
■ 打印信息

● SOT-26

①表示产品系列

打印符号	产品描述
1	PT 9182◆◆◆◆◆M◆

SOT-26W (TOP VIEW)


②③表示公司内部定义序列号集

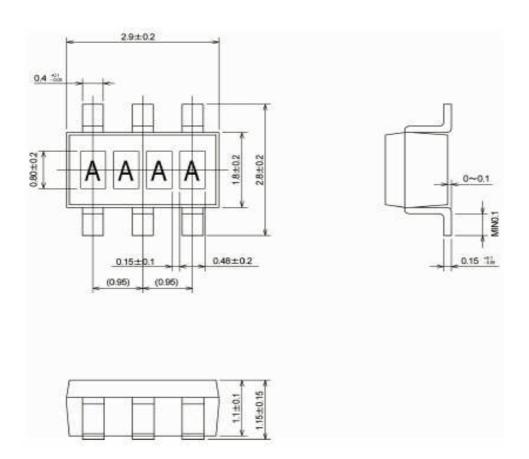
打印符号		山如 良利日佳	立口扭 决	
2	3	内部序列号集	产品描述	
С	2	C2	<a9182ee2025< td=""></a9182ee2025<>	
С	0	C0	<a9182ee2520< td=""></a9182ee2520<>	
0	1	01	<a9182ff2825< td=""></a9182ff2825<>	
1	8	18	<a9182ff2528< td=""></a9182ff2528<>	

④表示产品批号

数字 0-9, A-Z, 倒写数字 0-9, A-Z, 然后重复(G, I, J, 0, Q, ₩除外)

■ 引脚配置

SOT-23-6


■ 引脚分布

引脚号	引脚名	功能	
S0T-26	71/4/1		
4	EN1	使能端1	
5	VIN	电源输入	
3	EN2	使能端 2	
1	VOUT2	输出 2	
2	VSS	地	
6	VOUT1	输出 1	

H&M 华之美半导体 SEMI www.hmsemi.com

■ 封装信息

● S0T23-6

