## 芯片描述

HM9227 是一款高效率，高 PWM 开关频率的
DCDC 转换器。芯片内置有 $5 \mathrm{~A}, 0.050 h m$ 功率开关管，可以提供达 7 V 的输出电压。芯片高达 1.2 MHz 的开关频率实现小的电感和电容，同时提供极好的动态响应。芯片内置有软启动和环路补偿，只需要很少的外部元器件实现开关应力的减小及系统的稳定性

芯片功能主要特性

2． $3 V^{\sim} 7 \mathrm{~V}$ 输入电压范围
高达 5 A 的开关电流
1． 2 MHz 的固定开关频率
内置软启动
具有迟滞功能的欠压锁定
内置软启动
内置环路补偿
ESOP8 封装
．实物图：


## 芯片的基本应用

- 手持设备
- GPS 接收器
- 移动应用

HM9227 原理框图


芯片订购信息

| 芯片型号 | 封装类型 | 包装类型 | 最小包装数量 | 备注 |
| :---: | :---: | :---: | :---: | :---: |
| HM9227 | ESOP8 | 管装 | $50 /$ 管 | 带散热片 |

典型应用电路


引脚分布图
HM9227 封装引脚图


HM9227 ESOP8 封装的管脚分布图

管粗揞述

| 管脚名称 | 管脚号 | I／O | 描述 |
| :---: | :---: | :---: | :---: |
|  | ESOP8 |  |  |
| VDD | 1 | I | 供电电源输入 |
| EN | 2 | l | 芯片使能信号输入脚，高电平开启 |
| FB | 3 | l | 输出电压反馈脚 |
| AGND | 4 |  | 模拟地 |
| PGND | 5,6 |  | 功率地 |
| SW | 7,8 | O | 开关输出 |

## 极限参数

－芯片极限参数表

| 名称 | 描述 |  | 参数 |
| :---: | :---: | :---: | :---: |
| $\mathrm{V} \mathrm{V} C \mathrm{C}$ | 供电电压 | 工作模式 | -0.3 V 至 +9 V |
|  |  | 关断模式 | -0.3 V 至 +9 V |
| $\mathrm{~V}_{\mathrm{I}}$ | 输入电压 | -0.3 V 至 $\mathrm{VCC}+0.3 \mathrm{~V}$ |  |
| $\mathrm{~T}_{\mathrm{A}}$ | 环境工作温度 | $-40^{\circ} \mathrm{C}$ 至 $+85^{\circ} \mathrm{C}$ |  |
| $\mathrm{T}_{\mathrm{J}}$ | 结工作温度 | $-40^{\circ} \mathrm{C}$ 至 $+150^{\circ} \mathrm{C}$ |  |
| $\mathrm{T}_{\text {stg }}$ | 贮藏温度 | $-65^{\circ} \mathrm{C}$ 至 $+150^{\circ} \mathrm{C}$ |  |
|  | 焊接温度 | $260^{\circ} \mathrm{C}$ |  |

注：在极限值之外的任何其他条件下，芯片的工作性能不予保证。

## 推荐工作条件

－推荐工作条件表

| 参数 | 描述 |  | 最小值 | 最大值 | 单位 |
| :--- | :--- | :--- | :---: | :---: | :---: |
| VDD， | 工作电压 | 2.5 | 7 | V |  |
| VIH | 高电平输入电压 | EN | 1.5 | 7 | V |
| VIL | 低电平输入电压 | EN | 0 | 0.3 | V |
| TA | 工作环境温度 |  | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |

## 电气特性

除特别说明外，环境温度 $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ 。
－HM9227 电气特性表

| 参数 | 描述 | 条件 | 最小值 | 典型值 | 最大值 | 单位 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VDD | 输入电压范围 |  | 2.3 |  | 7 | V |
| Vout | 输出电压范围 |  |  |  | 7 | V |
| Iop | 芯片静态电流 | $\mathrm{EN}=\mathrm{VDD}, \mathrm{VFB}=1 \mathrm{~V}$ |  | 100 |  | $\mu \mathrm{A}$ |
| Isd | 芯片关断电流 | $\mathrm{VDD}=7 \mathrm{~V}, \mathrm{EN}=0 \mathrm{~V}$ |  | 1 |  | $\mu \mathrm{A}$ |
| VFB | 反馈电压 |  |  | 0.6 |  | V |
| Ilim | 峰值电感电流限制 |  |  | 5 |  | A |
| Fosc | 振荡器频率 |  | 0.9 | 1.2 | 1.5 | Mhz |
| Rdson | NMOS 导通阻抗 | $\mathrm{VDD}=7 \mathrm{~V}$ |  | 0.05 |  | Ohm |
| VEN | 使能阈值电压 |  | 1 |  |  | V |
| Zinen | 使能 PIN 输入阻抗 |  |  | 600 |  | Kohm |
| Isw | SW 脚漏电流 |  |  |  | 1 | uA |

功能原理图：


## 应用信息：

## 连续工作模式（CCM）

HM9227是一款电流模式 PWM 控制的升压控制器，在典型应用条件下其工作于 CCM下，在平衡状态下电感电流任何时候都不为零。其工作状态如图 1 所示，可分为两个阶段。
在 DT 阶段，HM9227 功率 MOS 导通，续流二极管反偏，电感电流增大开始储能，输出负载电流由输出电容提供；
在 $\mathrm{D}^{\prime} \mathrm{T}=$（1－D） T 阶段， $\operatorname{MOS}$ 关断，二极管导通，储存在电感中的能量给负载及输出电容提供电流。在平衡状态下，电感达到优秒平衡，

$$
\begin{aligned}
& \frac{V i n}{L} D T+\frac{V i n-V o}{L}(1-D)=0 \\
& V o=\frac{V i n}{1-D} \quad D=\frac{V o-V i n}{V o}
\end{aligned}
$$



图 1 CCM 下电感，二极管电流

## 输出电压设定

如典型应用图中所示，输出电压由连接到反馈脚的分压电阻 $\mathrm{Rfb} 1, \mathrm{Rfb} 2$ 设定，反馈脚电压 VFB 为 0.6 V ，则输出电压可以设定如下：

$$
V o=(R f b 1 / R f b 2+1) * 0.6
$$

## 过温保护（OTP）

HM9227 内置过温关断，避免由于过温造成的芯片损坏。典型条件下，关断温度设定在 $150^{\circ} \mathrm{C}$ ，此时芯片关闭功率管，直到芯片温度下降到 $136^{\circ} \mathrm{C}$ ，芯片重新开始工作。

## 功率电感的选择

在确定的 Vin，Vo 情况下，电感量决定了电感电流的上升斜率及下降斜率。电感电流纹波率 r ：

$$
r=\frac{\Delta i L}{i_{L_{-} \text {avg }}}=\frac{R o *(1-D)^{2 * D}}{L^{*} f}
$$

其中 $R o$ 为输出负载等效阻抗，$f$ 为．HM9227的开关频率。函数 $\mathrm{r}=\mathrm{f}$（D）在 $1 / 3$ 处有最大值。
在其他条件不变的情况下，电流纹波率 r 与电感量 L 成反比，要保证系统工作在 CCM ，必须满足 $r \leq 2$ ，由此得到电感的最小值

$$
L_{\min }=\frac{R o *(1-D)^{2} * D}{2 * f}
$$

而过小的电感申流纹波率，会导致大的申，感量及电感体积，必须确定一个最小纹波率，由此得到电感的最大值 Lmax。
另一方面，大的纹波率导致大的电容电流有效值影响效率，需要在两者间折衷。经验表明 $\mathrm{r}=0.3 \sim 0.5$ 是个合适的值。在使用小 ESR 电容时，可以增大电流纹波率以减小电感体积。
为避免电感饱和，电感的额定电流必须大于芯片的过流限制点，HM9227电流峰值限制典型值为5A。
推教使用 $1 \mathrm{uH} \sim 4.7 \mathrm{uH}$ ，饱和电流超过 5 A 的功率电感。

## 输入输出电容的选择

升压调节器功率开关管的不断开关，在系统输入端产生纹波，纹波的大小取决于实际应用中电流大小，系统的输入阻抗，及 PCB LAYOUT。必须使用一个输入电容来减小这个纹波，典型条件下 22 uF 或则 47 uF 已足够，若输入阻抗较大（例如输入走线很长）时，应加大输入电容值。在 HM9227 VDD 接输入端时，应加大电容或者在靠近芯片VDD 脚处加一小电容，以避免 VDD 欠压锁定的误触发。

输出电容的选择主要取决于所需要的输出电压纹波，为减小输出电流纹波，必须使用低 ESR 的电容，可以采用多个电容并联的方式。同时，在音频领域应用时，由于负载在某段时间内将超出系统的最大输出功率，所以必须采用较大的电容避免输出电压大的下掉。
音频应用时输入电容推存使用 470 uF 电解电容与 10 uF 钽电容并联，输出电容推孝使用 470 uF 电解电容与 22 uF 钽电容并联。

## 输出二极管的选择

输出二极管的选择取决于输出电压和输出电流。典型二极管电流波形如图1所示，二极管的平均电流等于系统的输出电流，使用的二极管的额定电流必须大于输出电流，同时二极管上的损耗正比于二极管正向导通压降，应选取正向压降小的二极管。在二极管关断阶段，二极管的反向电压为输出电压，应选取反向耐压大于输出电压的二极管。
视不同应用，推荐使用 SS32 或更高耐压更大电流的肖特基二极管。

## 开关节点振铃抑制

CSW，RSW以及 TVS 管 ZD1 用于抑制升压电路开关节点 SW 脚上的振铃，以降低损坏开关的风险和减少 EMI 。
推荐使用 1.2 ohm 电阻和 1 nF 贴片电容串联。

## 典型特性曲线



封装尺寸


