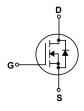


HMS11N60K/HMS11N60I 600V N-Channel MOSFET

General Description

This Power MOSFET is produced using H&M Semi's Advanced Super-Junction technology.

This advanced technology has been especially tailored to minimize conduction loss, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.


These devices are well suited for AC/DC power conversion in switching mode operation for higher efficiency.

Features

- 11A, 600V, $R_{DS(on)\,typ.}$ = 0.34Q@V $_{GS}$ = 10 V Low gate charge (typical 33nC)
- High ruggedness
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		HMS11N60K/HMS11N60I	Units V
V_{DSS}	Drain-Source Voltage		600	
	Drain Current - Continuous (T _C = 25 °C)		11*	Α
l _D	- Continuous (T _C = 100℃)		6.7 *	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	30 *	А
V_{GSS}	Gate-Source Voltage		±30	V
EAS	Single Pulsed Avalanche Energy (Note 2)		132	mJ
I _{AR}	Avalanche Current (Note 1)		2.1	Α
E_{AR}	Repetitive Avalanche Energy (Note 1)		65	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	5.0	V/ns
P _D	Power Dissipation (T _C = 25 °C)		125	W
	- Derate above 25℃		1.0	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes,			100
	1/8" from case for 5 seconds		300	C

^{*} Drain current limited by maximum junction temperature.

Thermal Characteristics

Symbol	Parameter	HMS11N60K/HMS11N60I	Units	
R _{eJC}	Thermal Resistance, Junction-to-Case	0.6	°C/W	
R _{eJS}	Thermal Resistance, Case-to-Sink Typ.	1.0	°C/W	
R _{eJA}	Thermal Resistance, Junction-to-Ambient	62	°C/W	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 uA	600			V
△BV _{DSS} / △T _J	Breakdown Voltage Temperature Coefficient	I _D = 250 uA, Referenced to 25℃		0.6		V/℃
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 600 V, V _{GS} = 0 V			1	uA
		V _{DS} = 480 V, T _C = 125℃			10	uA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 uA	2.5		4.5	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 5.5A	-	0.34	0.38	Ω
g FS	Forward Transconductance	$V_{DS} = 40 \text{ V}, I_D = 5.5 \text{A}$ (Note 4)		16		S
Dynam	ic Characteristics					
C _{iss}	Input Capacitance			680		pF
Coss	Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$		140		pF
Crss	Reverse Transfer Capacitance	f = 1.0 MHz		5		pF
Switch	ing Characteristics					
t _{d(on)}	Turn-On Delay Time			26		ns
tr	Turn-On Rise Time	$V_{DD} = 400 \text{ V}, I_D = 5.5 \text{ A},$		60		ns
t _{d(off)}	Turn-Off Delay Time	$R_G = 20 \Omega$ (Note 4, 5)	-	75		ns
t _f	Turn-Off Fall Time	(Note 4, 5)	-	44		ns
Qg	Total Gate Charge	V _{DS} = 480 V, I _D = 11 A,		33		nC
Qgs	Gate-Source Charge	V _{GS} = 10 V	-	4		nC
Q _{gd}	Gate-Drain Charge	(Note 4, 5)		4.2		nC
Drain-S	Source Diode Characteristics a	nd Maximum Ratings				
Is	Maximum Continuous Drain-Source Diode Forward Current				11	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				30	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 11A	_		1.5	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 11 A,		270		ns
Q _{rr}	Reverse Recovery Charge	dl _F / dt = 100 A/us (Note 4)		3.3		uC

- **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. $I_{AS} = 2.1A$, $V_{DD} = 50V$, $R_{G} = 25\Omega$, Starting $T_{J} = 25^{\circ}C$ 3. $I_{SD} \le 10A$, di/dt $\le 200A$ /us, $V_{DD} \le BV_{DSS}$, Starting $T_{J} = 25^{\circ}C$ 4. Pulse Test : Pulse width ≤ 300 us, Duty cycle $\le 2\%$ 5. Essentially independent of operating temperature

Typical Characteristics

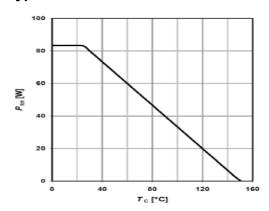


Figure 1. Power Dissipation for TO-251, TO-252

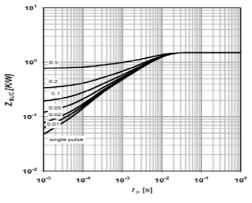


Figure 2. Transient Thermal Response Curve for TO-251,TO-252

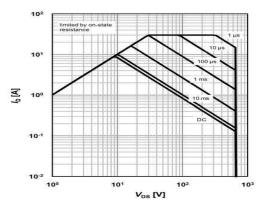


Figure 3. Maximum Safe Operating Area for TO-251,TO-252@25℃

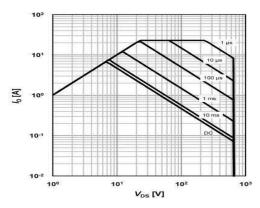


Figure 4. Maximum Safe Operating Area for TO-251,TO-252@80℃

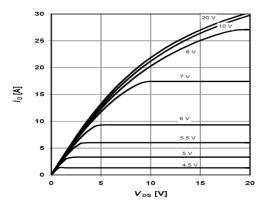


Figure 5. Output Characteristics@25°C

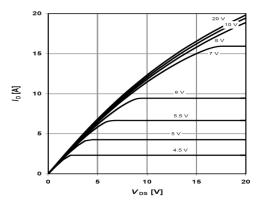


Figure 6. Output Characteristics@125°C

Typical Characteristics (Continued)

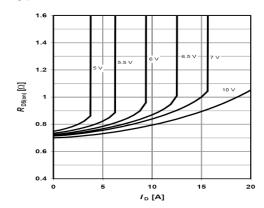


Figure 7. On-Resistance Variation vs Drain Current and Gate Voltage@125°C

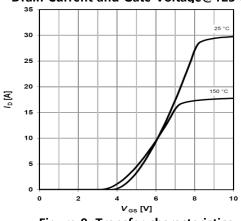


Figure 9. Transfer characteristics

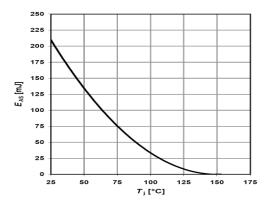


Figure 11. Avalanche Energy Characteristics

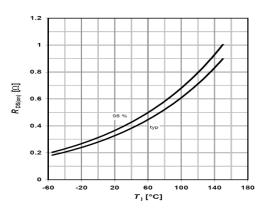


Figure 8. On-Resistance Variation

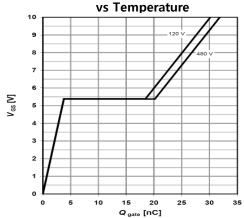


Figure 10. Gate charge

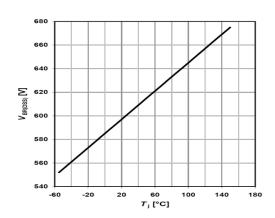


Figure 12. Breakdown Voltage Variation vs Temperature

Typical Characteristics (Continued)

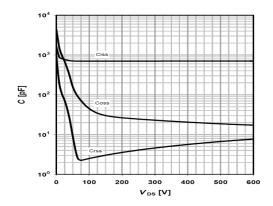


Figure 13. Capacitance Characteristics

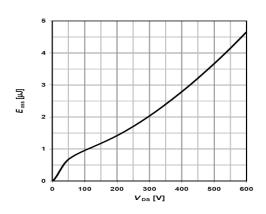


Figure 14. On-Resistance Variation vs Temperature

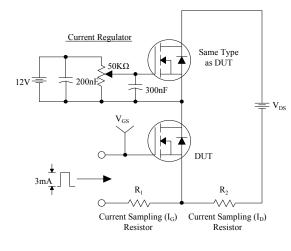
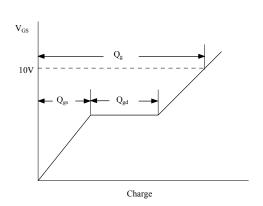
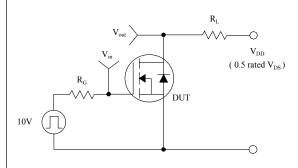
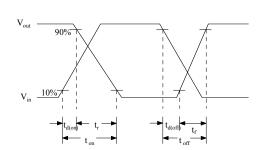
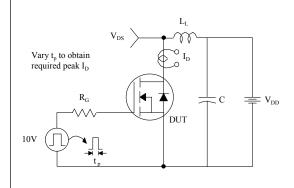
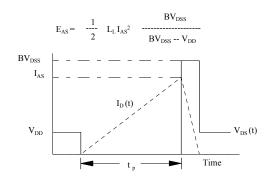




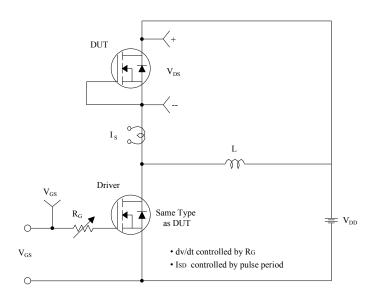
Figure 15. Body Diode Forward Voltage Variation with Source Current and Temperature

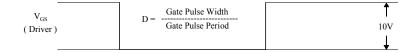


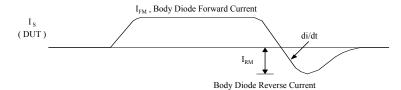

Gate Charge Test Circuit & Waveform

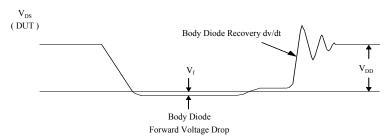



Resistive Switching Test Circuit & Waveforms


Unclamped Inductive Switching Test Circuit & Waveforms







Peak Diode Recovery dv/dt Test Circuit & Waveforms

