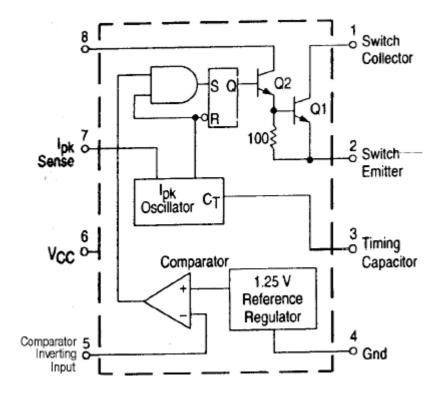
# 1,5 A, Step –Up/Down/Iuverting Switching Regulator


## DESCRIPTION

PT 34063 is a monolithic control circuit containing the primary functions required for DC-to-DC converters These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components.

## FEATURES

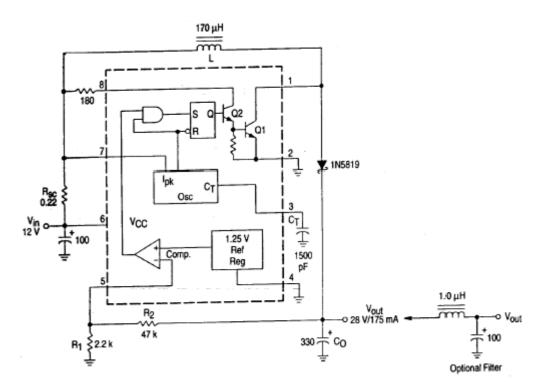
- Operation from 3.0 V to 40 V Input
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5 A
- Output Voltage Adjustable
- Frequency Operation to 100 kHz
- Precision 2% Reference
- 8 pin DIP and SO package

## SCHEMATIC DIAGRAM





## ABSOLUTE MAXIMUM RATINGS (for IC in Package)


| Rating                                               | Symbol          | Value   | Unit |
|------------------------------------------------------|-----------------|---------|------|
| Power Supply Voltage                                 | Vcc             | 40      | Vdc  |
| Comparator Input Voltage Range                       | VIR             | -0.3 to | Vdc  |
|                                                      |                 | +40     |      |
| Switch Collector Voltage                             | VC(switch)      | 40      | Vdc  |
| Switch Emitter Voltage ( $V_{PIN1} = 40 \text{ V}$ ) | VE(switch)      | 40      | Vdc  |
| Switch Collector to Emitter Voltage                  | VCE(switch)     | 40      | Vdc  |
| Driver Collector Voltage                             | VC(driver)      | 40      | Vdc  |
| Driver Collector Current (Note 1)                    | IC(driver)      | 100     | mA   |
| Switch Current                                       | I <sub>SW</sub> | 1.5     | Α    |
| Storage Temperature Range                            | Tstg            | -65 to  | °C   |
| •                                                    |                 | +150    |      |

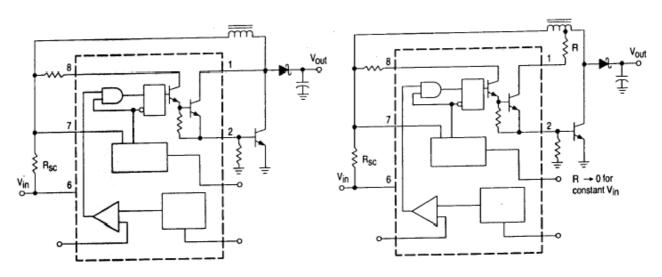
## ELECTRICAL CHARACTERISTICS

(Vcc = 5.0 V, TA =  $T_{low}$  to  $T_{high}$  unless otherwise specified, for IC in Package)

| Characteristics                                                                              | Symbol                                 | Min   | Тур  | Max   | Unit |  |
|----------------------------------------------------------------------------------------------|----------------------------------------|-------|------|-------|------|--|
| OSCILLATOR                                                                                   |                                        |       |      |       |      |  |
| Frequency                                                                                    | fosc                                   | 24    | 22   | 40    | ku-  |  |
| $(V_{pin5} = 0V, C_T = 1.0 \text{ nF}, T_A = 25^{\circ}C)$                                   | 000                                    | 24    | 33   | 42    | kHz  |  |
| Charge Current                                                                               | Ichg                                   | 04    | 05   | 40    |      |  |
| $(VCC = 5.0V \text{ to } 40V, TA = 25^{\circ}C)$                                             | Clig                                   | 24    | 35   | 42    | μA   |  |
| Discharge Current<br>( $V_{CC}$ = 5.0V to 40V, $T_A$ = 25°C)                                 | I <sub>dischg</sub>                    | 140   | 220  | 260   | μA   |  |
| Discharge to Charge Current Ratio                                                            | I <sub>dischg</sub> / I <sub>chg</sub> | -     |      |       |      |  |
| (Pin 7 to $V_{CC}$ , $T_A = 25^{\circ}C$ )                                                   | 6 6                                    | 5.2   | 6.5  | 7.5   | _    |  |
| Current Limit Sense Voltage                                                                  | Vipk(sence)                            |       |      |       |      |  |
| $(I_{chg} = I_{dischg}, T_A = 25^{\circ}C)$                                                  |                                        | 250   | 300  | 350   | mV   |  |
| OUTPUT SWITCH                                                                                |                                        |       |      |       |      |  |
| Saturation Voltage, Darlington Connection                                                    | V <sub>CE(sat)</sub>                   |       | 4.0  | 4.0   |      |  |
| $(I_{SW} = 1.0 \text{ A}, \text{Pins 1}, 8 \text{ connected})$                               | 02(301)                                | -     | 1.0  | 1.3   | V    |  |
| Saturation Voltage, Darlington Connection                                                    | V CE(sat)                              | _     | 0.45 | 0.7   | V    |  |
| (ISW = 1.0 A, R <sub>pin</sub> 8 = 82 $\Omega$ to V <sub>CC</sub> , Forced $\beta \cong$ 20) |                                        |       | 0.40 | 0.7   | v    |  |
| DC Current Gain                                                                              | h <sub>FE</sub>                        | 50    | 75   | -     | -    |  |
| (I <sub>SW</sub> = 1.0 A, VCE = 5.0 V, TA = 25 C)                                            |                                        |       |      |       |      |  |
| Collector Off-State Current                                                                  | I <sub>C(off)</sub>                    | _     | 40   | 100   | μΑ   |  |
| (V <sub>CE</sub> = 40 V)                                                                     | 0(01)                                  |       |      |       |      |  |
| COMPARATOR                                                                                   |                                        |       |      |       |      |  |
| Threshold Voltage                                                                            |                                        |       |      |       |      |  |
| (T <sub>A</sub> =25°C)                                                                       | Vth                                    | 1.225 | 1.25 | 1.275 | V    |  |
| (T <sub>A</sub> =T <sub>low</sub> to T <sub>high</sub> )                                     |                                        | 1.21  | _    | 1.29  |      |  |
| Threshold Voltage Line Regulation                                                            | Reg <sub>line</sub>                    |       |      |       |      |  |
| (Vcc=3.0 V to 40 V)                                                                          | i togillie                             | -     | 1.4  | 5.0   | mV   |  |
| Input Bias Current                                                                           | I <sub>IB</sub>                        |       | -20  | -400  | nA   |  |
| (Vin=0 V)                                                                                    |                                        |       | -20  | -400  | ПА   |  |
| TOTAL DEVICE                                                                                 |                                        |       |      |       |      |  |
| Supply Current                                                                               | Icc                                    | _     | _    | 4.0   | mA   |  |
| $(Vcc = 5.0 V to 40 V, C_T = 1.0 nF, Pin 7 = V_{CC},$                                        |                                        |       |      |       |      |  |
| Vpin 5 > Vth, Pin 2 = Gnd, remaining pins open)                                              |                                        |       |      |       |      |  |

Figure 1. Step-Up Converter





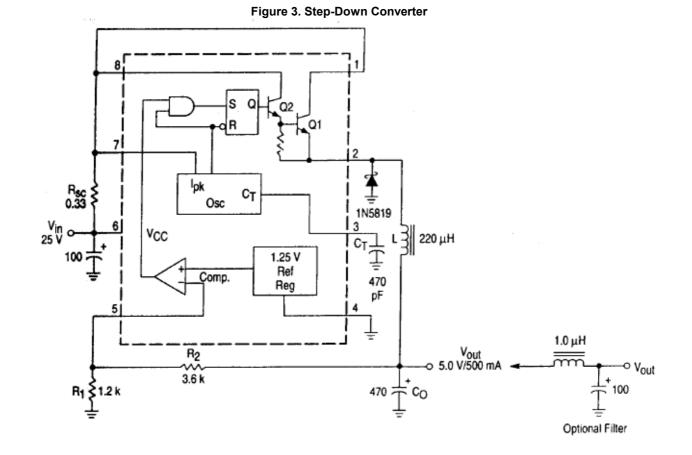

## 2.a External NPN Switch

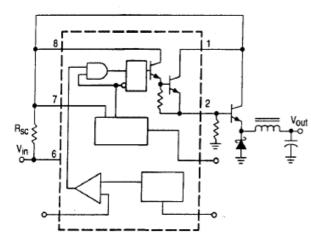
H&M 华之美半导体 Www.hmsemi.com

SE

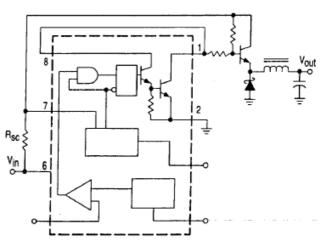
2.b External NPN Saturated Switch







Figure 4. External Current Boost Connections for IC Peak Greater than 1.5 A

### 4.a External NPN Switch


H&M 华之美半导体

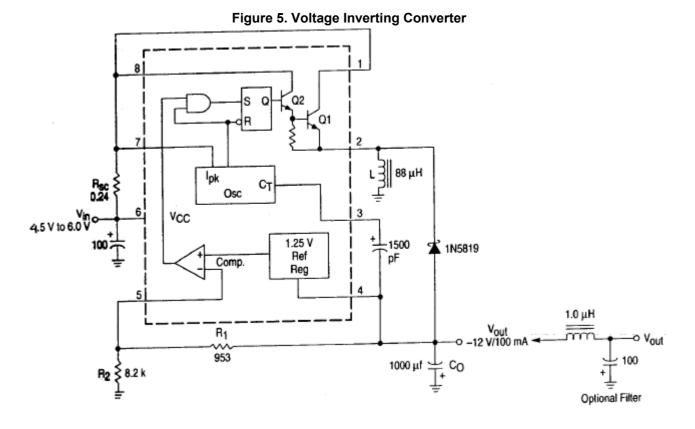
w.hmsemi.com

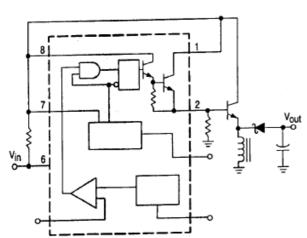
S



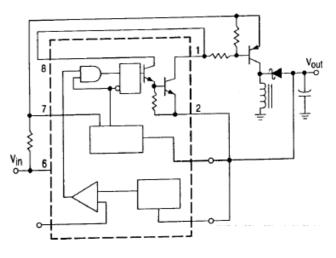
### 4.b External NPN Switch







Figure 6. External Current Boost Connections for IC Peak Greater than 1.5 A

6.a External NPN Switch


H&M 华之美半导体

M www.hmsemi.com

SE



#### 6.b External NPN Saturated Switch



| Calculation                             | Step-Up                                                                                                             | Step-Down                                                                                                              | Voltage-Inverting                                                                                                   |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| t <sub>on</sub> /t <sub>off</sub>       | $\frac{V_{out} + V_F - V_{in(min)}}{V_{in(min)} - V_{sat}}$                                                         | $\frac{V_{out} + V_F}{V_{in(min)} - V_{sat} - V_{out}}$                                                                | $\frac{\left V_{out}\right  + V_{F}}{V_{in(min)} + V_{sat}}$                                                        |  |
| (t <sub>on</sub> +t <sub>off</sub> )max | $\frac{1}{\mathbf{f}_{\min}}$                                                                                       | $\frac{1}{\mathbf{f}_{\min}}$                                                                                          | $\frac{1}{f_{min}}$                                                                                                 |  |
| CT                                      | 4.0 x 10 <sup>-5</sup> t <sub>on</sub>                                                                              | 4.0x10 <sup>-5</sup> t <sub>on</sub>                                                                                   | 4.0 x 10 <sup>-5</sup> t <sub>on</sub>                                                                              |  |
| l <sub>pk(switoh)</sub>                 | $2 \int_{out(max)} \frac{t_{on}}{t_{of}} + 1$                                                                       | 2 Cout(max)                                                                                                            | $2 \int_{\text{cut(max)}} \left[ \frac{\mathbf{t}_{on}}{\mathbf{t}_{off}} + 1 \right]$                              |  |
| R <sub>sc</sub>                         | 0.3/I <sub>pk(switeh)</sub>                                                                                         | 0.3/I <sub>pk(switeh)</sub>                                                                                            | 0.3/I <sub>pk(switeh)</sub>                                                                                         |  |
| L <sub>(min)</sub>                      | $\left\{\frac{\left(V_{\text{in(min)}} - V_{\text{sa}}\right)}{I_{\text{pk(switch)}}}\right\} = t_{\text{on(max)}}$ | $\frac{\left(V_{\text{in(min)}} - V_{\text{sat}} - V_{\text{out}}\right)}{I_{\text{pk(switch)}}} = t_{\text{on(max)}}$ | $\left\{\frac{\left(V_{\text{in(min)}} - V_{\text{sa}}\right)}{I_{\text{pk(switch)}}}\right\} = t_{\text{cn(max)}}$ |  |
| Co                                      | $9 \frac{I_{out} t_{on}}{V_{ripple(pp)}}$                                                                           | $\frac{I_{\text{pk(switch)}}(t_{\text{on}} + t_{\text{off}})}{8V_{\text{rippk(pp)}}}$                                  | $9 \frac{I_{out} t_{on}}{V_{ripple(pp)}}$                                                                           |  |

## Figure 7. Design Formula Table

V<sub>sat</sub> = Saturation voltage of the output switch.

V<sub>F</sub> = Forward voltage drop of the output rectifier.

The following power supply characteristics must be chosen:

V<sub>in</sub> - Nominal input voltage.

Vout - Desired output voltage,

$$|V_{cu}| = 1.25 1 + \frac{R_2}{R_1}$$

lout - Desired output current.

fmin - Minimum desired output switching frequency at the selected values of Vin and IO.

V<sub>ripple(p-p)</sub> – Desired peack-to-peack output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.