

直流马达驱动电路

HM2532

特性

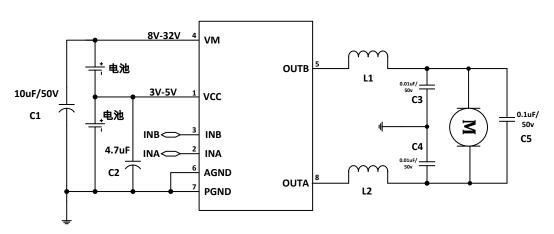
- 低待机电流
- 低导通内阻 MOSFET 功率开关管
 - 一 采用 MOS 工艺设计功率管
 - SOP8 封装 12V 供电 500 毫安通道功率管内 阻 2.9 欧姆
 - ESOP8 封装 12V 供电 500 毫安通道功率管内阻 1.8 欧姆
- 较小的输入电流
 - 集成约 106K 对地下拉电阻
 - 一 5V 驱动信号平均 47uA 输入电流
- 内置带迟滞效应的过热保护电路 (TSD)
- 内置限流保护电路,输出对地短路,输出与输出短路,不烧电路
- 抗静电等级: 2KV (HBM)

应用范围

- 直流风扇摇头电机驱动
- 航模电机驱动
- 监控设备步进电机驱动

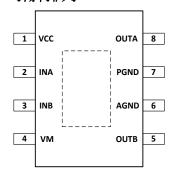
订购信息

产品型号	封装	工作温度
HM2532E	ESOP8	-20℃ ~85℃
HM2532	SOP8	-20℃ ~85℃

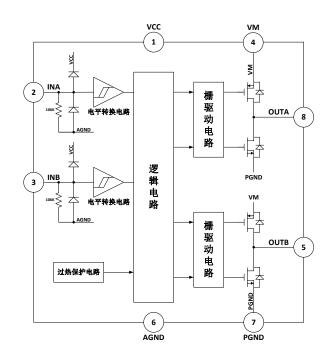

典型应用图

概述

该产品采用 H 桥电路结构设计,采用高可靠性功率管工艺,特别适合驱动线圈、马达等感性负载。电路内部集成 N 沟道和 P 沟道功率 MOSFET,工作电压范围覆盖 8V 到 32V。27℃,VM=24V 条件下 SOP8 封装最大持续输出电流达到 0.55A,ESOP8 封装最大持续输出电流达到 0.75A,最大峰值输出电流达到 1.5A。

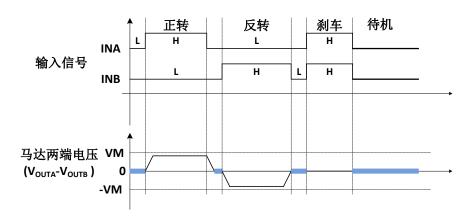

该单路为功率器件,本身具备一定内阻,电路的发热与负载电流、功率管导通内阻以及环境温度密切相关。电路设计有芯片级温度检测电路,实时监控芯片内部发热,当芯片内部温度超过设定值时(典型值 150℃),产生功率管关断信号,关闭负载电流,避免因异常使用导致的温度持续升高,进而造成塑料封装冒烟、起火等严重安全事故。芯片内置的温度迟滞电路,确保电路恢复到安全温度后,才允许重新对功率管进行控制。

该驱动电路内置限流保护电路。当流过功率管的电流超过设定值时,内部电路限流保护电路启动,功率管最大输出电流将被限制在设定值。该功能可确保电路输出端口与地短路、输出端口之间短路时,电路不烧毁。


引脚排列

引脚定义

引脚编号	引脚名称	输入/输出	引脚功能描述		
1	VCC	-	逻辑控制电源端		
2	INA	I	正转逻辑输入		
3	INB	1	反转逻辑输入		
4	VM	-	功率电源端		
5	OUTB	0	反转输出		
6	AGND	-	逻辑电源接地端		
7	PGND	-	功率电源接地端		
8	OUTA	0	正转输出		
ESOP8 封装芯片底部散热片接 AGND					


功能框图

逻辑真值表

INA	INB	OUTA	OUTB	功能
L	L	Z	Z	待机
Н	L	Н	L	正转
L	Н	L	Н	反转
Н	Н	L	L	刹车

典型波形示意图

绝对最大额定值(T_A=25℃)

参数	数		符号		值	单位
最大逻辑控制电源电压		VCC(MAX)	6			
最大功率电源电压	<u>.</u>	VM(MAX)	36	- V		
最大外加输出端电	1压	VOUT(MAX)	VM			
最大外加输入电压	î	VIN(MAX)	VCC			
最大峰值输出电流	Ĺ	IOUT(PEAK)	1.5	А		
最大功耗	SOP8 封装	P _D	1	W		
取入切れ	ESOP8 封装	P _D	1.5	VV		
结到环境热阻	SOP8 封装	θ_{JAS}	123	°C /\A\		
1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ESOP8 封装	θ_{JAS}	83	°C/W		
工作温度范围		T _{opr}	-20~+85	$^{\circ}$		
结温	结温		150	$^{\circ}$		
储存温度		Tstg	-55~+150	$^{\circ}$		
焊接温度		T _{LED}	260℃,10秒			
ESD(注 3)	ESD(注 3)		2000	V		

- 注: (1)、不同环境温度下的最大功耗计算公式为: P_D=(150℃-T_A)/θ_{JA}
 T_A表示电路工作的环境温度,θ_{JA}为封装的热阻。150℃表示电路的最高工作结温。
 - (2)、电路功耗的计算方法:P = I²*R

其中 P 为电路功耗, I 为持续输出电流, R 为电路的导通内阻。电路功耗 P 必须小于最大功耗 Po

- (3)、人体模型, 100pF 电容通过 1.5KΩ 电阻放电。
- (4)、电路工作条件超过绝对最大额定值规定的范围时,极有可能导致电路立即损坏。

推荐工作条件(T_A=25℃)

参数		符号	最小值		典型值		最大值	单位
		47.5	取小阻	VM=8V	VM=12V	VM=24V	取入徂	中 世
逻辑和控制电源	电压	VCC	3				5.5	V
功率电源电压		VM	8				32	V
持续输出电流	SOP8	I _{OUT}		0.45	0.5	0.55		Α
付绘測出电弧	ESOP8	I _{OUT}		0.65	0.7	0.75		Α

注: (1)、逻辑控制电源 VCC 与功率电源 VM 内部完全独立,可分别供电。当逻辑控制电源 VCC 掉电之后,电路将进入待机模式。

(2)、持续输出电流测试条件为: 电路焊接在专用 PCB 板上测试,SOP8 和 ESOP8 封装的测试 PCB 板尺寸为 22mm*18mm,EOP8 封装 PCB 测试板底部有散热片,芯片底部焊接在散热片上。若芯片底部未与散热片链接,芯片最大持续电流会下降很多。

推荐工作条件下,芯片内部结温不超过125℃。

电特性参数表

(T_A=25℃, VCC=5V, VM =24V 除非另有规定)

	C-3 V, VII	符号	5 11 刀	最小值	曲形店	旦土店	单位	
参数		付写	条件	取小徂	典型值	最大值	平 位	
电源参数			T	1	1	T	I	
VM 关断电流		I _{VM}	VCC=0V;VM=24V		10		uA	
VCC 待机电流		I _{VCCST}	INA=INB= L;VCC=6V;		580		uA	
VM 待机电流		I _{VMST}	VM=24V;输出悬空		340		uA	
VCC 静态电源	电流	I _{VCC}	INA=H OR INB=H;输出悬空		570			
VM 静态电源	电流	I_{VM}	INA=H OR INB=H;输出悬空		560		uA	
输入逻辑电平								
输入高电平		V _{INH}	VCC=5V	0.7*VCC				
输入低电平		V_{INL}	VCC=5V			0.6	V	
输入电平迟滞		V _{HYS}			0.6			
输入高电平电	流	I _{INH}	VCC=5V, VIN=5V		47		uA	
输入下拉电阻 R _{IN}		R _{IN}	VCC=5V, VIN=5V		106		ΚΩ	
功率管导通内	阻			•	•			
	cono		IO=±500mA,VM=12V,TA=25 °C		2.9			
	SOP8		IO=±500mA,VM=24V,TA=25℃		2.7			
导通内阻	55000	R _{ON}	IO=±500mA,VM=12V,TA=25℃		1.8		Ω	
	ESOP8		IO=±500mA,VM=24V,TA=25°C		1.7			
保护功能参数				•	•			
热关断温度点		TSD			150		00	
热关断温度迟滞 TSD		TSDH			20		°C	
时间参数			•	•	•			
输出上升时间 输出下降时间		t _r			485			
		t _f	VCC=5V, VM =24V,INB=H,INA 输入接		665		1	
输出延迟时间					470		ns	
输出延迟时间		t _{fr}	输出分别接 0.1uF 电容对地		380		1	
m Exc.c. 11				1	l	l	l	

典型应用线路图

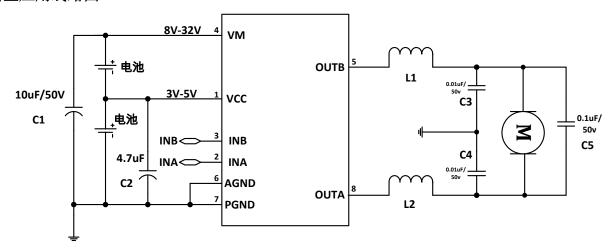


图 1 HM2532 典型应用线路图

特别注意事项:

图 1 中的功率电源 VM 对地去耦电容(C1)容值应根据具体的应用调整, VM 电压越高,输出峰值电流越大, C1 取值越大,但是电容 C1 的取值至少需要 10uF。

输出端口对地 103 电容的主要作用是稳定输出波形,避免干扰内部电路,使输出 SPWM 波形更加稳定。如果 PCB 设计合理的情况下是不需要加的,如果 PCB 设计不合理,在电机电流大到一定程度之后,输出不能完全响应输入信号时,需要添加!

逻辑电源 VCC 对地电容 C2 必须至少需要 4.7uF,实际应用时不需要靠近芯片单独添加一个电容,可以与 MCU 等控制芯片共用。

图 1 所示,如果电机类型为有刷电机,则必须要在电机两端就近并联 104 电容。如果是永磁同步电机(风扇摇头电机)可以不加。

图 1 所示的功率电源 VM 对地去耦电容 C 1 以及逻辑电源 VCC 对地去耦电容必须添加,否则驱动电机时电路极易被电机产生的尖峰电压损坏,其中 C1 必须就进放置。为避免干扰控制芯片,建议整体地线布局以 C1 电容的负极为参考,进行单点接地。具体示意图,参考图 2。

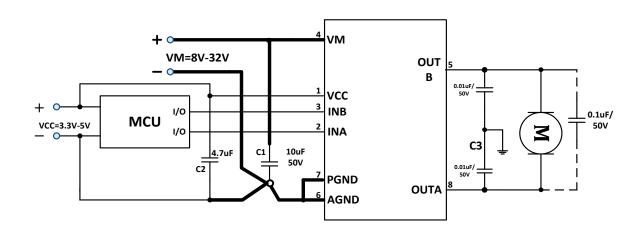


图 2 单点接地参考

如图 2 所示,电路 HM2532 的大电流 PGND 必须直接就近连接到去耦电容 C1 的负极上。必要时,需要添加 0.1uF 的瓷片去耦电容,以便旁路高频尖峰脉冲。

风扇摆头电机驱动应用线路图

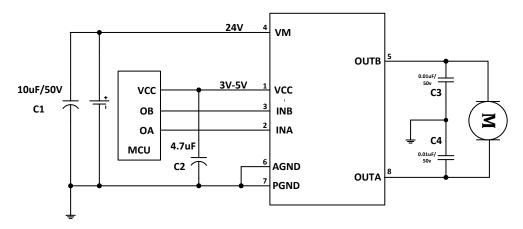


图 3 HM2532 驱动风扇摆头电机应用线路图

特别注意事项:

- 1、功率电源 VM 对地去耦电容(C1)容值应根据具体的应用调整,VM 电压越高,输出峰值电流越大,C1 取值越大,但是电容 C1 的取值至少需要 10uF。如果芯片放置在系统 24V 电源附近,可以和电源共享一个大电容。
- 2、逻辑电源 VCC 对地电容 C2 必须至少需要 4.7uF,实际应用时不需要靠近芯片单独添加一个电容,可以与 MCU 等控制芯片共用。
- 3、在加工过程中,如果在芯片工作时,存在接入或者断开电机的情况(带电拔插),必须添加 C3 和 C4。且必须靠近芯片。
- 4、建议采用 SPWM 电压波形驱动电机,可以获得近似交流电机的电流波形,从而降低噪声。此时需要采用 PWM 模式 B,不建议用 PWM 模式 A。

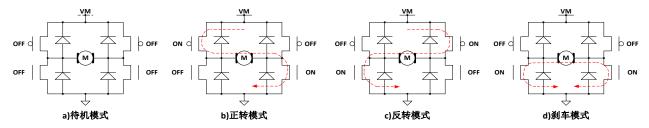
应用说明

1、基本工作模式

a)待机模式

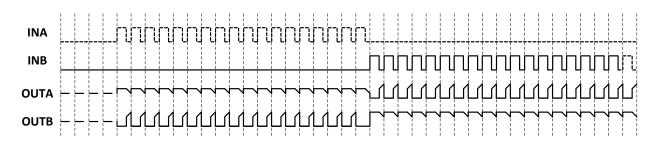
在待机模式下,INA=INB=L。包括驱动功率管在内的所有内部电路都处于关断状态。电路消耗极低的电流。此时马达输出端 OUTA 和 OUTB 都为高阻状态。

b)正转模式


正转模式的定义为: INA=H, INB=L, 此时马达驱动端 OUTA 输出高电平,马达驱动端 OUTB 输出低电平,马达驱动电流从 OUTA 流入马达,从 OUTB 流到地端,此时马达的转动定义为正转模式。

c)反转模式

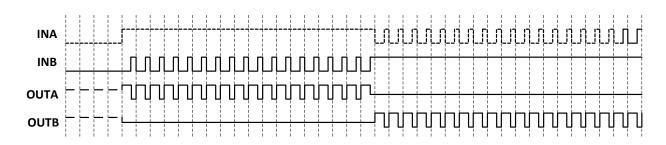
反转模式的定义为: INA=L, INB=H, 此时马达驱动端 OUTB 输出高电平,马达驱动端 OUTA 输出低电平,马达驱动电流从 OUTB 流入马达,从 OUTA 流到地端,此时马达的转动定义为反转模式。


d)刹车模式

刹车模式的定义为: INA=H,INB=H,此时马达驱动端 OUTA 以及 OUTB 都输出低电平,马达内存储的能量将通过 OUTA 端 NMOS 管或者 OUTB 端 NMOS 快速释放,马达在短时间内就会停止转动。注意在刹车模式下电路将消耗静态功耗。

e)PWM 模式 A

当输入信号 INA 为 PWM 信号,INB=0 或者 INA=0,INB 为 PWM 信号时,马达的转动速度将受 PWM 信号占空比的控制。在这个模式下,马达驱动电路是在导通和待机模式之间切换,在待机模式下,所有功率管都处于关断状态,马达内部储存的能量只能通过功率 MOSFET 的体二极管缓慢释放。



PWM 模式 A 信号波形示意图

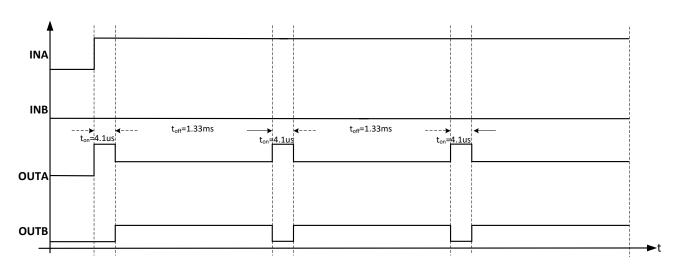
f)PWM 模式 B

当输入信号 INA 为 PWM 信号,INB=1 或者 INA=1,INB 为 PWM 信号时,马达的转动速度将受到 PWM 信号占空比的控制。在这个模式下,马达驱动电路输出在导通和刹车模式之间,在刹车模式下马达存储的 能量通过低边的 NMOS 管快速释放。

PWM 模式 B 信号波形示意图

2、防共态导通电路

在全桥驱动电路中,将半桥内的高边 PMOS 功率管和低边 NMOS 功率管同时导通的状态称为共态导通 状态。共态导通将出现一个电源至地的瞬态大电流,该电流会引起额外的功耗损失,极端情况下会烧毁电 路。通过内置死区时间,可避免共态导通。典型的死区时间为 300ns。


3、过热保护电路

当驱动电路结温超过预设温度(典型值为 150℃)时,TSD 电路开始工作,此时控制电路强制关断所有输出功率管,驱动电路输出进入高阻状态。TSD 电路中设计了热迟滞,只有当电路的结温下降到预设温度(典型值 130℃)时,电路返回正常工作状态。

4、限流保护电路

电路内部的比较电路能够实时检测 PMOS 功率管的导通压降,当导通压降超过内部设定值时,功率管驱动电路将驱动功率 PMOS 进入线性恒流模式,其最大输出电流由内部电路限制。最大输出电流限制在 1A。

电路从检测出限流到进入到限流保护状态有 4.1us 的屏蔽时间 ton, 电路限流状态时输出处于三态模式, 电路限流保护时输出的关断时间 toff 为 1.33ms。电路的输出的波形图如下所示:

5、驱动电路最大持续功耗

该系列马达驱动电路内部均设计有过热保护电路,因此当驱动电路消耗的功耗过大时,电路将进入热 关断模式,热关断状态下马达将无法正常工作。驱动电路最大持续功耗的计算公式为:

 P_M =(150℃- T_A)/ θ_{JA} 其中 150℃为热关断电路预设温度点, T_A 为电路工作的环境温度(℃), θ_{JA} 为电路的结到环境的热阻(单位℃/W)。

注意:驱动电路的最大持续功耗与环境温度、封装形式以及散热设计等因素有关,与电路导通内阻并 无直接关系。

6、驱动电路功耗

马达驱动电路内部功率 MOSFET 的导通内阻是影响驱动电路功耗的主要因素。驱动电路功耗的计算公

式为: $P_D=I_L^{2*}R_{ON}$ 其中 I_L 表示马达驱动电路的输出电流, R_{ON} 表示功率 MOSFET 的导通内阻。

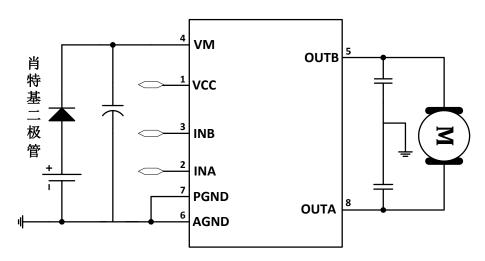
注意:功率 MOSFET 的导通内阻随着温度的升高而升高,在计算电路的最大持续输出电流以及功耗时必须考虑导通内阻的温度特性。

7、驱动电路最大持续输出电流

根据驱动电路的最大持续功耗以及驱动电路功耗可计算出驱动电路的最大持续输出电流,计算公式为:

$$I_L = \sqrt{(150-T_A)/\big(\theta_{JA}*R_{ONT}\big)}$$

其中的 Ront 为考虑温度特性后的功率 MOSFET 导通内阻。


注意:驱动电路的最大持续输出电流与环境温度、封装形式、散热设计以及功率 MOSFET 的导通内阻等因素有关。

特别注意事项

1、电源与地反接

将电路的电源与地线反接,将导致电路损坏,严重时会导致塑料封装冒烟。可考虑在电路的电源端串联一个功率肖特基二极管至电池的正端,可防止由于电池接反引起的电路损坏。功率肖特基二极管的最大持续电流能力必须大于马达堵转的持续电流,否则肖特基二极管会因为过热而损坏。功率肖特基二极管的反向击穿电压必须大于最高电源电压,如果反向击穿电压过小,当电池反接时,会击穿肖特基二极管造成烧毁。

2、功率电源 VM 对地去耦电容(C1)

驱动电路要求添加的功率电源 VM 对地去耦电容 C1(参考应用线路图 1)主要有两个作用: 1)、吸收马达向电源释放的能量,稳定电源电压,避免电路因为过压而击穿; 2)、在马达起动或者快速正转、反转切换的瞬间,马达需要瞬间大电流才能迅速启动。由于电池的响应速度以及连接引线较长,往往不能立即输出瞬态大电流,此时需要依赖靠近马达驱动电路附近的储能电容释放出瞬态大电流。

根据电容的储能特性,电容容值越大,相同时间内的电压波动越小,因此在高压、大电流的应用条件下建议电容 C1 取值 100uF,建议根据具体的应用选择电容值,但是该电容 C1 取值至少需要 10uF。

3、静电防护

电路的输入/输出端口采用了 CMOS 器件,对静电放电敏感。虽然设计有静电防护电路,但在运输、包装、加工、储存过程中应该采取防静电措施,尤其是在加工过程中应重点考虑防静电。

4、输出对地短路、输出端短路

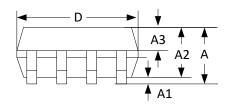
电路内部设计有限流保护电路,可以保护电路在遇到短路等异常状况时不会立即损坏。

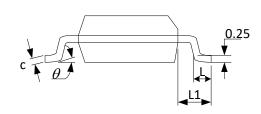
5、输出对电源短路

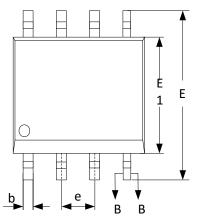
在正常工作时,当电路的低电平输出端与电源发生短路时,电路将会被损坏。

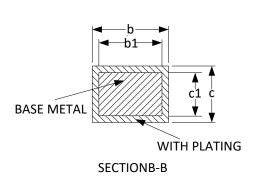
6、马达堵转

如果负载马达的堵转电流远大于最大峰值电流,电路较容易损坏。

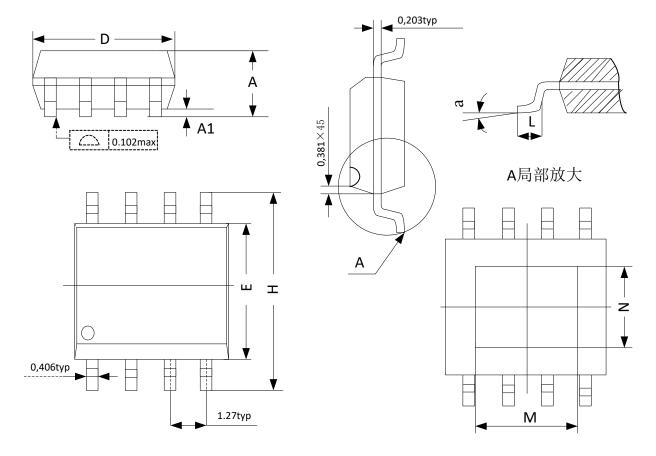

7、峰值电流大大超过额定值


在接近或超过最高工作电压且峰值电流大大超过绝对最大峰值电流时也会造成芯片烧毁。




封装外形尺寸图

SOP8:



CVMAPOL		MILLIMETER			
SYMBOL	MIN	NOM	MAX		
Α			1.77		
A1	0.08	0.18	0.28		
A2	1.20	1.40	1.60		
А3	0.55	0.65	0.75		
b	0.39		0.48		
b1	0.38	0.41	0.43		
С	0.21		0.26		
c1	0.19	0.20	0.21		
D	4.70	4.90	5.10		
E	5.80	6.00	6.20		
E1	3.70	3.90	4.10		
е		1.27BSC			
L	0.50	0.65	0.80		
L1		1.05BSC			
θ	0		8°		

ESOP8:

SYMBOL	MIN	MAX		
Α	1.346	1.753		
A1	0.102	0.254		
D	4.801	4.978		
E	3.81	3.988		
Н	5.791	6.198		
L	0.406	1.27		
M	3.302			
N	2.413			
a °	0	8		